Hierarchical Vision Transformers for prostate biopsy grading: Towards bridging the generalization gap

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Clément Grisi , Kimmo Kartasalo , Martin Eklund , Lars Egevad , Jeroen van der Laak , Geert Litjens
{"title":"Hierarchical Vision Transformers for prostate biopsy grading: Towards bridging the generalization gap","authors":"Clément Grisi ,&nbsp;Kimmo Kartasalo ,&nbsp;Martin Eklund ,&nbsp;Lars Egevad ,&nbsp;Jeroen van der Laak ,&nbsp;Geert Litjens","doi":"10.1016/j.media.2025.103663","DOIUrl":null,"url":null,"abstract":"<div><div>Practical deployment of Vision Transformers in computational pathology has largely been constrained by the sheer size of whole-slide images. Transformers faced a similar limitation when applied to long documents, and Hierarchical Transformers were introduced to circumvent it. This work explores the capabilities of Hierarchical Vision Transformers for prostate cancer grading in WSIs and presents a novel technique to combine attention scores smartly across hierarchical transformers. Our best-performing model matches state-of-the-art algorithms with a 0.916 quadratic kappa on the Prostate cANcer graDe Assessment (PANDA) test set. It exhibits superior generalization capacities when evaluated in more diverse clinical settings, achieving a quadratic kappa of 0.877, outperforming existing solutions. These results demonstrate our approach’s robustness and practical applicability, paving the way for its broader adoption in computational pathology and possibly other medical imaging tasks. Our code is publicly available at <span><span>https://github.com/computationalpathologygroup/hvit</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"105 ","pages":"Article 103663"},"PeriodicalIF":11.8000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525002105","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Practical deployment of Vision Transformers in computational pathology has largely been constrained by the sheer size of whole-slide images. Transformers faced a similar limitation when applied to long documents, and Hierarchical Transformers were introduced to circumvent it. This work explores the capabilities of Hierarchical Vision Transformers for prostate cancer grading in WSIs and presents a novel technique to combine attention scores smartly across hierarchical transformers. Our best-performing model matches state-of-the-art algorithms with a 0.916 quadratic kappa on the Prostate cANcer graDe Assessment (PANDA) test set. It exhibits superior generalization capacities when evaluated in more diverse clinical settings, achieving a quadratic kappa of 0.877, outperforming existing solutions. These results demonstrate our approach’s robustness and practical applicability, paving the way for its broader adoption in computational pathology and possibly other medical imaging tasks. Our code is publicly available at https://github.com/computationalpathologygroup/hvit.
前列腺活检分级的分层视觉变压器:弥合泛化差距
视觉变形在计算病理学中的实际应用在很大程度上受到了全片图像大小的限制。在应用于长文档时,transformer也面临类似的限制,分层转换器的引入就是为了规避这一限制。这项工作探讨了层次视觉变压器在wsi中前列腺癌分级的能力,并提出了一种跨层次变压器巧妙地组合注意力分数的新技术。我们的最佳表现模型与最先进的算法相匹配,在前列腺癌分级评估(PANDA)测试集上具有0.916的二次kappa。当在更多样化的临床环境中进行评估时,它表现出优越的泛化能力,实现了0.877的二次kappa,优于现有的解决方案。这些结果证明了我们的方法的稳健性和实用性,为其在计算病理学和可能的其他医学成像任务中的广泛采用铺平了道路。我们的代码可以在https://github.com/computationalpathologygroup/hvit上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信