Catherine Jacob-Dolan, David Hope, Jinyan Liu, Alejandra Waller-Pulido, Brookelynne Verrette, Dalia N. Cabrera-Barragan, Samuel J. Nangle, Qixin Wang, Ross Blanc, Jana Fisher, Ninaad Lasrado, Liping Wang, Anthony Cook, Laurent Pessiant, Mark Lewis, Hanne Andersen, Markay Hopps, Ingrid L. Scully, Pirada Suphaphiphat Allen, Ryan P. McNamara, Annaliesa S. Anderson, Dan H. Barouch
{"title":"Adenovirus and mRNA vaccines as well as mucosal boosting improve protective efficacy against influenza virus challenge in macaques","authors":"Catherine Jacob-Dolan, David Hope, Jinyan Liu, Alejandra Waller-Pulido, Brookelynne Verrette, Dalia N. Cabrera-Barragan, Samuel J. Nangle, Qixin Wang, Ross Blanc, Jana Fisher, Ninaad Lasrado, Liping Wang, Anthony Cook, Laurent Pessiant, Mark Lewis, Hanne Andersen, Markay Hopps, Ingrid L. Scully, Pirada Suphaphiphat Allen, Ryan P. McNamara, Annaliesa S. Anderson, Dan H. Barouch","doi":"10.1126/scitranslmed.adu7646","DOIUrl":null,"url":null,"abstract":"<div >The clinically approved seasonal influenza vaccines provide only 10 to 60% efficacy, necessitating strategies to improve vaccine performance. Here, we explored strategies for improving influenza vaccine efficacy using gene-based vaccines and mucosal boosting strategies in nonhuman primates. All vaccinated cynomolgus macaques were primed with the clinical quadrivalent inactivated virus (QIV) vaccine. We evaluated a rhesus adenovirus (RhAd52) vector delivered by intramuscular or mucosal routes and an mRNA vaccine encoding the hemagglutinin of A/H1N1/Wisconsin/67/2022 delivered intramuscularly as boosts compared with the QIV vaccine delivered intramuscularly and the quadrivalent live-attenuated influenza virus (LAIV) vaccine delivered intranasally. Boosting with RhAd52 and mRNA vaccines induced more robust humoral and cellular immune responses than the clinically approved vaccines and provided improved protective efficacy against a high-dose homologous challenge with A/H1N1/Wisconsin/67/2022. The RhAd52 vaccine delivered by the intratracheal route elicited robust mucosal antibody and T cell responses and provided optimal protection in the upper and lower respiratory tracts. Both peripheral and mucosal antibody responses, as well as mucosal T cell responses, correlated with protection against viral loads. Altogether, this study defines strategies for improving H1N1 seasonal influenza vaccine efficacy by using gene-based vaccines and by optimizing mucosal immunity.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 806","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adu7646","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adu7646","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The clinically approved seasonal influenza vaccines provide only 10 to 60% efficacy, necessitating strategies to improve vaccine performance. Here, we explored strategies for improving influenza vaccine efficacy using gene-based vaccines and mucosal boosting strategies in nonhuman primates. All vaccinated cynomolgus macaques were primed with the clinical quadrivalent inactivated virus (QIV) vaccine. We evaluated a rhesus adenovirus (RhAd52) vector delivered by intramuscular or mucosal routes and an mRNA vaccine encoding the hemagglutinin of A/H1N1/Wisconsin/67/2022 delivered intramuscularly as boosts compared with the QIV vaccine delivered intramuscularly and the quadrivalent live-attenuated influenza virus (LAIV) vaccine delivered intranasally. Boosting with RhAd52 and mRNA vaccines induced more robust humoral and cellular immune responses than the clinically approved vaccines and provided improved protective efficacy against a high-dose homologous challenge with A/H1N1/Wisconsin/67/2022. The RhAd52 vaccine delivered by the intratracheal route elicited robust mucosal antibody and T cell responses and provided optimal protection in the upper and lower respiratory tracts. Both peripheral and mucosal antibody responses, as well as mucosal T cell responses, correlated with protection against viral loads. Altogether, this study defines strategies for improving H1N1 seasonal influenza vaccine efficacy by using gene-based vaccines and by optimizing mucosal immunity.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.