Integrating Diverse Strengtheners Empowers a Ferrous High-Entropy Alloy at Ambient and Elevated Temperatures

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Gao, Yue Li, Xichen Zhou, Qianyong Zhu, Cheng Zhang, Xiao Liang, Yichen Wu, Guowang Xu, Peiwen Tang, Yi Huang, Yu Liu, Ruming Geng, Yong Li, Chunxu Wang, Maowen Liu, Yuanyuan Lu, Ruixiao Zheng, Chaoli Ma, Robert O. Ritchie, Hongbo Guo, Shiteng Zhao
{"title":"Integrating Diverse Strengtheners Empowers a Ferrous High-Entropy Alloy at Ambient and Elevated Temperatures","authors":"Wei Gao, Yue Li, Xichen Zhou, Qianyong Zhu, Cheng Zhang, Xiao Liang, Yichen Wu, Guowang Xu, Peiwen Tang, Yi Huang, Yu Liu, Ruming Geng, Yong Li, Chunxu Wang, Maowen Liu, Yuanyuan Lu, Ruixiao Zheng, Chaoli Ma, Robert O. Ritchie, Hongbo Guo, Shiteng Zhao","doi":"10.1016/j.actamat.2025.121320","DOIUrl":null,"url":null,"abstract":"The development of materials that exhibit enhanced strength-ductility synergy across a broad temperature spectrum is a non-stop pursuit for material scientists. It challenges the conventional paradigm of materials designed for optimal performance within a limited temperature range. In this study, we implement a combinational approach by integrating the high-entropy principles of a metastable Fe-based metallic matrix with negative mixing enthalpy strategies for intermetallic precipitates, alongside phase engineering techniques for multicomponent ceramic dispersions, to fabricate a novel multiphase high-entropy alloy with a nominal composition of Fe-28.2Ni-17Co-11Al-2.5Ta-0.5C-0.04B (at.%). The composite microstructural design leverages various strengthening mechanisms across scales, such as dislocation slip, deformation twinning, and martensite phase transformation at high strength levels, thereby achieving a remarkable tensile strength over 1.83 GPa and an exceptional tensile elongation of 20.6% at room temperature. Furthermore, it demonstrates an impressive yield strength of 583 MPa at 1073 K, substantially broadening its applicability at elevated temperatures compared to traditional ferrous alloys. The strategic integration of diverse deformation mechanisms through multiphase design not only enhances material performance under extreme conditions but also opens new avenues for the application of advanced materials in demanding environments.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"2 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121320","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of materials that exhibit enhanced strength-ductility synergy across a broad temperature spectrum is a non-stop pursuit for material scientists. It challenges the conventional paradigm of materials designed for optimal performance within a limited temperature range. In this study, we implement a combinational approach by integrating the high-entropy principles of a metastable Fe-based metallic matrix with negative mixing enthalpy strategies for intermetallic precipitates, alongside phase engineering techniques for multicomponent ceramic dispersions, to fabricate a novel multiphase high-entropy alloy with a nominal composition of Fe-28.2Ni-17Co-11Al-2.5Ta-0.5C-0.04B (at.%). The composite microstructural design leverages various strengthening mechanisms across scales, such as dislocation slip, deformation twinning, and martensite phase transformation at high strength levels, thereby achieving a remarkable tensile strength over 1.83 GPa and an exceptional tensile elongation of 20.6% at room temperature. Furthermore, it demonstrates an impressive yield strength of 583 MPa at 1073 K, substantially broadening its applicability at elevated temperatures compared to traditional ferrous alloys. The strategic integration of diverse deformation mechanisms through multiphase design not only enhances material performance under extreme conditions but also opens new avenues for the application of advanced materials in demanding environments.

Abstract Image

集成多种增强剂,使亚铁高熵合金在环境和高温下
开发在广泛的温度范围内表现出增强的强度-延性协同作用的材料是材料科学家不断追求的目标。它挑战了在有限温度范围内设计最佳性能的传统材料范例。在这项研究中,我们采用了一种组合方法,将亚稳铁基金属基体的高熵原理与金属间析出相的负混合焓策略相结合,以及多组分陶瓷分散体的相工程技术,制备了一种新型多相高熵合金,其标称成分为Fe-28.2Ni-17Co-11Al-2.5Ta-0.5C-0.04B (at.%)。复合材料的微观结构设计利用了多种强化机制,如位错滑移、变形孪晶和高强度马氏体相变,从而获得了超过1.83 GPa的抗拉强度和20.6%的室温拉伸伸长率。此外,该合金在1073 K时的屈服强度高达583 MPa,大大拓宽了其在高温下的适用性。通过多相设计,多种变形机制的战略性整合不仅提高了材料在极端条件下的性能,而且为先进材料在苛刻环境中的应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信