Light-Induced Fe-LMCT Catalysis for Redox-Coupled Conversion of NOx and SO2 Mixture.

Ruimin Chen, Jielin Wang, Taobo Huang, Chunling Zhang, Xiuping Zhu, Jieyuan Li, Fan Dong
{"title":"Light-Induced Fe-LMCT Catalysis for Redox-Coupled Conversion of NO<sub>x</sub> and SO<sub>2</sub> Mixture.","authors":"Ruimin Chen, Jielin Wang, Taobo Huang, Chunling Zhang, Xiuping Zhu, Jieyuan Li, Fan Dong","doi":"10.1002/anie.202510456","DOIUrl":null,"url":null,"abstract":"<p><p>The coexistent nitrogen oxides (NO<sub>x</sub>) and sulfur dioxide (SO<sub>2</sub>) in flue gas pose inherent challenges for simultaneous removal due to their disparate reactivities. Conventional sequential treatments for their simultaneous removal face major issues of catalyst deactivation and byproduct generation. Here, we develop a subtle strategy using light-induced ligand-to-metal charge transfer (LMCT) catalysis with Fe(II) ethylenediaminetetraacetic acid (EDTA-Feᴵᴵ) to achieve redox-coupled conversion of NO and SO<sub>2</sub> mixtures. LMCT excitation in EDTA-Fe<sup>II</sup> induces directional charge separation under irradiation, routing photogenerated electrons (e⁻) to Feᴵᴵ for driving selective NO-to-N<sub>2</sub> conversion (selectivity: 99.89%), while photogenerated holes (h<sup>+</sup>) oxidize SO<sub>2</sub> to SO<sub>4</sub> <sup>2</sup>⁻ (selectivity: 96.34%). This spatial segregation of redox pathways suppresses N<sub>2</sub>O generation, enabling continuous operation with 90.3% NO and nearly 100% SO<sub>2</sub> removal efficiency. Mechanism studies reveal the LMCT-enhanced charge transfer from carboxyl/amino groups to Fe centers, while in situ EPR confirms the •SO<sub>3</sub> <sup>2</sup>⁻ radical-mediated h<sup>+</sup> scavenging that accelerates charge separation and utilization. This work establishes Fe-LMCT catalysis as a sustainable platform for gas-phase pollutants remediation, achieving unprecedented selectivity through precise redox pathway control.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202510456"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202510456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The coexistent nitrogen oxides (NOx) and sulfur dioxide (SO2) in flue gas pose inherent challenges for simultaneous removal due to their disparate reactivities. Conventional sequential treatments for their simultaneous removal face major issues of catalyst deactivation and byproduct generation. Here, we develop a subtle strategy using light-induced ligand-to-metal charge transfer (LMCT) catalysis with Fe(II) ethylenediaminetetraacetic acid (EDTA-Feᴵᴵ) to achieve redox-coupled conversion of NO and SO2 mixtures. LMCT excitation in EDTA-FeII induces directional charge separation under irradiation, routing photogenerated electrons (e⁻) to Feᴵᴵ for driving selective NO-to-N2 conversion (selectivity: 99.89%), while photogenerated holes (h+) oxidize SO2 to SO4 2⁻ (selectivity: 96.34%). This spatial segregation of redox pathways suppresses N2O generation, enabling continuous operation with 90.3% NO and nearly 100% SO2 removal efficiency. Mechanism studies reveal the LMCT-enhanced charge transfer from carboxyl/amino groups to Fe centers, while in situ EPR confirms the •SO3 2⁻ radical-mediated h+ scavenging that accelerates charge separation and utilization. This work establishes Fe-LMCT catalysis as a sustainable platform for gas-phase pollutants remediation, achieving unprecedented selectivity through precise redox pathway control.

光诱导Fe-LMCT催化氧化还原耦合转化NOx和SO2混合物。
烟气中共存的氮氧化物(NOx)和二氧化硫(SO2)由于其不同的反应性,给同时去除带来了固有的挑战。传统的顺序处理同时去除它们面临催化剂失活和副产物产生的主要问题。本研究利用Fe(II)乙二胺四乙酸(EDTA-Fe)光诱导配体-金属电荷转移(LMCT)催化实现NO和SO2混合物的氧化还原偶联转化。EDTA-FeII中的LMCT激发诱导定向电荷在辐照下发生分离,将光生电子导向Fe驱动NO-to-N2选择性转化(选择性为99.89%),而光生空穴将SO2氧化为SO42-(选择性为96.34%)。这种氧化还原途径的空间隔离抑制了N2O的产生,使其能够连续运行,NO去除率为90.39%,SO2去除率接近100%。机制研究表明lmct增强了电荷从羧基/氨基转移到铁中心,而原位EPR证实了•SO32-自由基介导的h+清除加速了电荷的分离和利用。这项工作建立了Fe-LMCT催化作为气相污染物修复的可持续平台,通过精确的氧化还原途径控制实现了前所未有的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信