De novo assembly of transcriptome during regeneration post-arm amputation in the starfish, Asterias amurensis.

IF 1.9 Q3 GENETICS & HEREDITY
Mi Jeong Jo, Hye-Jin Go, Jeong Gyu Kim, Gun-Do Kim
{"title":"De novo assembly of transcriptome during regeneration post-arm amputation in the starfish, Asterias amurensis.","authors":"Mi Jeong Jo, Hye-Jin Go, Jeong Gyu Kim, Gun-Do Kim","doi":"10.1186/s12863-025-01340-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study investigates the nerve cord transcriptome of Asterias amurensis to explore its regenerative abilities. By comparing gene expression between a normal group and a group 72 h post-amputation, key genes involved in regeneration were identified. Functional annotation using GO, KEGG, NR, and UniProt databases provided insights into the biological roles of these genes. This research enhances the understanding of A. amurensis regeneration and highlights the need for further transcriptome analysis across different tissues.</p><p><strong>Data description: </strong>A. amurensis, a starfish species found in the northwestern Pacific, is known for its strong predatory behavior and impact on marine biodiversity. In this study, individuals were divided into a normal group and a 72-hour post-amputation group. De novo transcriptome assembly of the nerve cord identified 257,769 unigenes, which were functionally annotated using GO, KEGG, NR, and UniProt databases. Since only nerve cord tissue was analyzed, additional transcriptome studies on various tissues are required for a more comprehensive understanding of A. amurensis biology.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"26 1","pages":"45"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-025-01340-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study investigates the nerve cord transcriptome of Asterias amurensis to explore its regenerative abilities. By comparing gene expression between a normal group and a group 72 h post-amputation, key genes involved in regeneration were identified. Functional annotation using GO, KEGG, NR, and UniProt databases provided insights into the biological roles of these genes. This research enhances the understanding of A. amurensis regeneration and highlights the need for further transcriptome analysis across different tissues.

Data description: A. amurensis, a starfish species found in the northwestern Pacific, is known for its strong predatory behavior and impact on marine biodiversity. In this study, individuals were divided into a normal group and a 72-hour post-amputation group. De novo transcriptome assembly of the nerve cord identified 257,769 unigenes, which were functionally annotated using GO, KEGG, NR, and UniProt databases. Since only nerve cord tissue was analyzed, additional transcriptome studies on various tissues are required for a more comprehensive understanding of A. amurensis biology.

海星手臂截肢后再生过程中转录组的新生组装。
目的:研究苦参神经束转录组,探讨其再生能力。通过比较正常组和截肢后72 h组的基因表达,确定了参与再生的关键基因。使用GO、KEGG、NR和UniProt数据库的功能注释提供了对这些基因的生物学作用的见解。这项研究增强了对黑水蒿再生的理解,并强调了进一步跨不同组织进行转录组分析的必要性。资料说明:a . amurensis是一种在西北太平洋发现的海星,以其强大的掠食行为和对海洋生物多样性的影响而闻名。在本研究中,个体被分为正常组和截肢后72小时组。神经索从头转录组组装鉴定出257,769个不同基因,使用GO, KEGG, NR和UniProt数据库对其进行功能注释。由于只分析了神经索组织,因此需要对各种组织进行额外的转录组研究,以更全面地了解藏红花的生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信