J Felipe Montano-Campos, Erin Hahn, Eric Haupt, Jerald Radich, Aasthaa Bansal
{"title":"Using Early Biomarker Change and Treatment Adherence to Predict Risk of Relapse Among Patients With Chronic Myeloid Leukemia Who Are in Remission.","authors":"J Felipe Montano-Campos, Erin Hahn, Eric Haupt, Jerald Radich, Aasthaa Bansal","doi":"10.1200/CCI-25-00003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>There is little guidance for decision making in chronic myeloid leukemia (CML) after patients achieve molecular remission. Our study addresses this gap by developing a risk prediction model for molecular relapse using early longitudinal factors, such as BCR::ABL1 biomarker-level changes and treatment adherence.</p><p><strong>Methods: </strong>We analyzed electronic health record data of patients with CML diagnosed between 2007 and 2019 from an integrated health system. We used a time-to-event modeling framework using a Cox proportional hazards approach where we evaluated time from molecular remission to molecular relapse. The main predictors were early changes in BCR::ABL1 levels from treatment initiation to the first follow-up measurement (typically around 3 months) and treatment adherence in the first 6 months, categorized as perfect (≥0.98) or less-than-perfect (<0.98). Model performance was assessed through five-fold cross-validation combined with 100 Monte Carlo bootstrapping iterations to ensure robustness and minimize bias.</p><p><strong>Results: </strong>Patients with early improvement in BCR::ABL1 levels had a 70% lower risk relapse (hazard ratio [HR], 0.30 [95% CI, 0.15 to 0.59]) compared with those without early molecular response. Perfect adherence during this critical early phase of treatment was associated with a 56% lower relapse risk (HR, 0.44 [95% CI, 0.22 to 0.85]). Predictive accuracy was high at 6 months (AUC, 0.90; 95% CI, 0.87 to 0.95) and 1-year postremission (AUC, 0.78; 95% CI, 0.74 to 0.81). Relapse risk was significantly higher among Black, Asian, and Hispanic patients compared with non-Hispanic White patients.</p><p><strong>Conclusion: </strong>Early biomarker trends and adherence after treatment initiation are critical for accurately predicting relapse among patients who achieve molecular remission. The proposed model addresses a gap in guidance after molecular remission and has the potential to enable personalized monitoring and optimize surveillance strategies, offering transformative potential for CML care.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2500003"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-25-00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: There is little guidance for decision making in chronic myeloid leukemia (CML) after patients achieve molecular remission. Our study addresses this gap by developing a risk prediction model for molecular relapse using early longitudinal factors, such as BCR::ABL1 biomarker-level changes and treatment adherence.
Methods: We analyzed electronic health record data of patients with CML diagnosed between 2007 and 2019 from an integrated health system. We used a time-to-event modeling framework using a Cox proportional hazards approach where we evaluated time from molecular remission to molecular relapse. The main predictors were early changes in BCR::ABL1 levels from treatment initiation to the first follow-up measurement (typically around 3 months) and treatment adherence in the first 6 months, categorized as perfect (≥0.98) or less-than-perfect (<0.98). Model performance was assessed through five-fold cross-validation combined with 100 Monte Carlo bootstrapping iterations to ensure robustness and minimize bias.
Results: Patients with early improvement in BCR::ABL1 levels had a 70% lower risk relapse (hazard ratio [HR], 0.30 [95% CI, 0.15 to 0.59]) compared with those without early molecular response. Perfect adherence during this critical early phase of treatment was associated with a 56% lower relapse risk (HR, 0.44 [95% CI, 0.22 to 0.85]). Predictive accuracy was high at 6 months (AUC, 0.90; 95% CI, 0.87 to 0.95) and 1-year postremission (AUC, 0.78; 95% CI, 0.74 to 0.81). Relapse risk was significantly higher among Black, Asian, and Hispanic patients compared with non-Hispanic White patients.
Conclusion: Early biomarker trends and adherence after treatment initiation are critical for accurately predicting relapse among patients who achieve molecular remission. The proposed model addresses a gap in guidance after molecular remission and has the potential to enable personalized monitoring and optimize surveillance strategies, offering transformative potential for CML care.