Vinita Shukla, Amit Shukla, Surya Prakash S K, Shraddha Shukla
{"title":"A systematic survey: role of deep learning-based image anomaly detection in industrial inspection contexts.","authors":"Vinita Shukla, Amit Shukla, Surya Prakash S K, Shraddha Shukla","doi":"10.3389/frobt.2025.1554196","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial automation is rapidly evolving, encompassing tasks from initial assembly to final product quality inspection. Accurate anomaly detection is crucial for ensuring the reliability and robustness of automated systems. The intelligence of an industrial automation system is directly linked to its ability to detect and rectify abnormalities, thereby maintaining optimal performance. To advance intelligent manufacturing, sophisticated methods for high-quality process inspection are indispensable. This paper presents a systematic review of existing deep learning methodologies specifically designed for image anomaly detection in the context of industrial manufacturing. Through a comprehensive comparison, traditional techniques are evaluated against state-of-the-art advancements in deep learning-based anomaly detection methodologies, including supervised, unsupervised, and semi-supervised learning methods. Addressing inherent challenges such as real-time processing constraints and imbalanced datasets, this review offers a systematic analysis and mitigation strategies. Additionally, we explore popular anomaly detection datasets for surface defect detection and industrial anomaly detection, along with a critical examination of common evaluation metrics used in image anomaly detection. This review includes an analysis of the performance of current anomaly detection methods on various datasets, elucidating strengths and limitations across different scenarios. Moreover, we delve into the domain of drone-based, manipulator-based and AGV-based anomaly detections using deep learning techniques, highlighting the innovative applications of these methodologies. Lastly, the paper offers scholarly rigor and foresight by addressing emerging challenges and charting a course for future research opportunities, providing valuable insights to researchers in the field of deep learning-based surface defect detection and industrial image anomaly detection.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1554196"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1554196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial automation is rapidly evolving, encompassing tasks from initial assembly to final product quality inspection. Accurate anomaly detection is crucial for ensuring the reliability and robustness of automated systems. The intelligence of an industrial automation system is directly linked to its ability to detect and rectify abnormalities, thereby maintaining optimal performance. To advance intelligent manufacturing, sophisticated methods for high-quality process inspection are indispensable. This paper presents a systematic review of existing deep learning methodologies specifically designed for image anomaly detection in the context of industrial manufacturing. Through a comprehensive comparison, traditional techniques are evaluated against state-of-the-art advancements in deep learning-based anomaly detection methodologies, including supervised, unsupervised, and semi-supervised learning methods. Addressing inherent challenges such as real-time processing constraints and imbalanced datasets, this review offers a systematic analysis and mitigation strategies. Additionally, we explore popular anomaly detection datasets for surface defect detection and industrial anomaly detection, along with a critical examination of common evaluation metrics used in image anomaly detection. This review includes an analysis of the performance of current anomaly detection methods on various datasets, elucidating strengths and limitations across different scenarios. Moreover, we delve into the domain of drone-based, manipulator-based and AGV-based anomaly detections using deep learning techniques, highlighting the innovative applications of these methodologies. Lastly, the paper offers scholarly rigor and foresight by addressing emerging challenges and charting a course for future research opportunities, providing valuable insights to researchers in the field of deep learning-based surface defect detection and industrial image anomaly detection.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.