{"title":"[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].","authors":"Y W Wang, Y M Tang","doi":"10.3760/cma.j.cn121090-20240911-00343","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has achieved breakthroughs in treating relapsed/refractory B-cell malignancies. However, it still faces challenges, including complex manufacturing processes, limited indications, T-cell exhaustion, and insufficient durability of therapeutic efficacy. CRISPR/Cas9, a highly efficient and relatively simple gene-editing technology, offers new avenues for overcoming these limitations. This review briefly outlines the working mechanism of CRISPR/Cas9 and focuses on its recent applications and clinical practices in developing universal CAR T-cells, enhancing T-cell function, and extending CAR T-cell therapy to T-cell and myeloid leukemias. Furthermore, this review highlights optimization strategies developed over the past two years to enhance the editing precision, delivery efficiency, and safety of the CRISPR/Cas9 system, aiming to provide insights for the optimal design and clinical application of CAR T-cell therapy.</p>","PeriodicalId":24016,"journal":{"name":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","volume":"46 5","pages":"481-488"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121090-20240911-00343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved breakthroughs in treating relapsed/refractory B-cell malignancies. However, it still faces challenges, including complex manufacturing processes, limited indications, T-cell exhaustion, and insufficient durability of therapeutic efficacy. CRISPR/Cas9, a highly efficient and relatively simple gene-editing technology, offers new avenues for overcoming these limitations. This review briefly outlines the working mechanism of CRISPR/Cas9 and focuses on its recent applications and clinical practices in developing universal CAR T-cells, enhancing T-cell function, and extending CAR T-cell therapy to T-cell and myeloid leukemias. Furthermore, this review highlights optimization strategies developed over the past two years to enhance the editing precision, delivery efficiency, and safety of the CRISPR/Cas9 system, aiming to provide insights for the optimal design and clinical application of CAR T-cell therapy.