{"title":"Joint modeling of mixed outcomes using a rank-based sparse neural network.","authors":"Jiajing Xue, Yaqing Xu, Jingmao Li, Shuangge Ma, Kuangnan Fang","doi":"10.1016/j.jbi.2025.104870","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In the past few decades, high-throughput profiling has been extensively conducted, leading to significant advancements in cancer research, survival analysis, and other biomedical studies. While many methods have been developed to identify important features and construct predictive models, biomedical research often faces challenges due to insufficient information caused by high dimensionality and small sample sizes, which frequently lead to unsatisfactory identification and prediction accuracy.</p><p><strong>Methods: </strong>In this paper, we propose a rank-based sparse neural network that efficiently leverages information from mixed outcomes, particularly incorporating survival data. The proposed method accounts for unknown relationships between outcomes and high-dimensional covariates, whereas many traditional methods are built on a parametric framework. A novel loss function is derived to address the gradient imbalance issue and accommodate mixed outcomes. A sparse layer is developed to implement the penalization method, enabling the identification of important variables.</p><p><strong>Results: </strong>We conducted extensive simulation studies, showing that the proposed method is effective and broadly applicable. The analysis of skin cutaneous melanoma (SKCM) demonstrates the competitive performance of our proposed method.</p><p><strong>Conclusion: </strong>The proposed method effectively models mixed outcomes (including survival data) and selects important features, which is beneficial for biomedical studies like cancer and genomic research.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104870"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2025.104870","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: In the past few decades, high-throughput profiling has been extensively conducted, leading to significant advancements in cancer research, survival analysis, and other biomedical studies. While many methods have been developed to identify important features and construct predictive models, biomedical research often faces challenges due to insufficient information caused by high dimensionality and small sample sizes, which frequently lead to unsatisfactory identification and prediction accuracy.
Methods: In this paper, we propose a rank-based sparse neural network that efficiently leverages information from mixed outcomes, particularly incorporating survival data. The proposed method accounts for unknown relationships between outcomes and high-dimensional covariates, whereas many traditional methods are built on a parametric framework. A novel loss function is derived to address the gradient imbalance issue and accommodate mixed outcomes. A sparse layer is developed to implement the penalization method, enabling the identification of important variables.
Results: We conducted extensive simulation studies, showing that the proposed method is effective and broadly applicable. The analysis of skin cutaneous melanoma (SKCM) demonstrates the competitive performance of our proposed method.
Conclusion: The proposed method effectively models mixed outcomes (including survival data) and selects important features, which is beneficial for biomedical studies like cancer and genomic research.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.