{"title":"<i>CYLD</i> as a key regulator of myocardial infarction-to-heart failure transition revealed by multi-omics integration.","authors":"Jingya Xu, Zhonghua Dong, Zhaodong Li, Xuan Wang","doi":"10.3389/fgene.2025.1592985","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Heart failure (HF) is the most common complication following myocardial infarction (MI) and frequently occurs during the postinfarction recovery phase. Despite the well-established association between HF and MI, the underlying molecular mechanisms driving their transition remain poorly understood.</p><p><strong>Methods: </strong>The aim of this study was to identify key regulatory genes involved in this transition via advanced computational tools. We conducted a comprehensive analysis of differentially expressed genes (DEGs) via Limma software, leveraging five independent datasets retrieved from the Gene Expression Omnibus (GEO) database: GSE59867, GSE62646, GSE168281, GSE267644, and GSE269269. Our multistep analytical pipeline included weighted gene coexpression network analysis (WGCNA) to map interacting genes, machine learning algorithms for robust classification, functional annotation via Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore biological pathways, CIBERSORT correlation analysis linking hub genes with immune cell states, transcriptional regulation profiling of key hubs, and single-cell sequencing to assess the functional relevance of these hubs.</p><p><strong>Results: </strong>Our findings revealed that 413 DEGs were significantly different between MI and HF. WGCNA identified 98 genes associated with both conditions. Machine learning filtering further prioritized 10 hub genes: <i>GPER1</i>, <i>E2F5</i>, <i>DZIP3, CYLD</i>, <i>ADAMTS2</i>, <i>ZNF366</i>, <i>ST14, SNORD28</i>, <i>LHFPL2</i>, and <i>HIVEP2</i>. These hubs were significantly associated with immune-related processes, suggesting their potential role in the pathogenesis of HF after MI. Single-cell transcriptomic analysis demonstrated that <i>CYLD</i> exhibited the strongest correlation with the transition from MI to HF; using random forest modelling, we validated its predictive value in this context.</p><p><strong>Discussion: </strong>In conclusion, our study identified <i>CYLD</i> as a critical regulator of the transition from MI to HF. Our findings underscore the potential of hub genes as targets for novel therapeutic interventions aimed at mitigating MI-to-HF progression and improving patient outcomes.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1592985"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1592985","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Heart failure (HF) is the most common complication following myocardial infarction (MI) and frequently occurs during the postinfarction recovery phase. Despite the well-established association between HF and MI, the underlying molecular mechanisms driving their transition remain poorly understood.
Methods: The aim of this study was to identify key regulatory genes involved in this transition via advanced computational tools. We conducted a comprehensive analysis of differentially expressed genes (DEGs) via Limma software, leveraging five independent datasets retrieved from the Gene Expression Omnibus (GEO) database: GSE59867, GSE62646, GSE168281, GSE267644, and GSE269269. Our multistep analytical pipeline included weighted gene coexpression network analysis (WGCNA) to map interacting genes, machine learning algorithms for robust classification, functional annotation via Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore biological pathways, CIBERSORT correlation analysis linking hub genes with immune cell states, transcriptional regulation profiling of key hubs, and single-cell sequencing to assess the functional relevance of these hubs.
Results: Our findings revealed that 413 DEGs were significantly different between MI and HF. WGCNA identified 98 genes associated with both conditions. Machine learning filtering further prioritized 10 hub genes: GPER1, E2F5, DZIP3, CYLD, ADAMTS2, ZNF366, ST14, SNORD28, LHFPL2, and HIVEP2. These hubs were significantly associated with immune-related processes, suggesting their potential role in the pathogenesis of HF after MI. Single-cell transcriptomic analysis demonstrated that CYLD exhibited the strongest correlation with the transition from MI to HF; using random forest modelling, we validated its predictive value in this context.
Discussion: In conclusion, our study identified CYLD as a critical regulator of the transition from MI to HF. Our findings underscore the potential of hub genes as targets for novel therapeutic interventions aimed at mitigating MI-to-HF progression and improving patient outcomes.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.