iPSC-derived NK cells engineered with CD226 effectively control acute myeloid leukemia.

IF 9.4 1区 医学 Q1 HEMATOLOGY
Runze Cai, Binyan Lu, Xiangyu Zhao, Shixin Zhou, Yang Li
{"title":"iPSC-derived NK cells engineered with CD226 effectively control acute myeloid leukemia.","authors":"Runze Cai, Binyan Lu, Xiangyu Zhao, Shixin Zhou, Yang Li","doi":"10.1186/s40164-025-00686-9","DOIUrl":null,"url":null,"abstract":"<p><p>CD226 plays a vital role in NK cell cytotoxicity, interacting with its ligands on tumor targets. Acute myeloid leukemia (AML) cells have developed mechanisms to escape NK cell cytotoxicity, including inducing downregulation of CD226 on NK cells. Induced pluripotent stem cell -derived NK (iPSC-NK) cells offer an important source of standardized off-the-shelf NK cell therapy to treat AML patients. In this study, we engineered iPSC-NK cells with CD226 to assess the ability of killing AML cells. iPSC-NK cells engineered with CD226 have a typical NK cell phenotype and demonstrate improved anti-AML activity and multiple cytokines releasing at low effector-to-target ratios. Transcriptomic analysis revealed upregulation of immune effector function pathways associated with cytotoxicity and immune activation in CD226-overexpression iPSC-NK cells. In an AML xenograft model, mice treated with CD226 overexpression iPSC-NK cells exhibited significantly reduced leukemia burden, prolonged survival, decreased systemic inflammation compared to those treated with Control iPSC-NK cells. Overall, our study provided evidence that iPSC derived-NK cells engineered with CD226 represent a promising candidate for off-the-shelf immunotherapy, particularly in AML and other CD226 ligand-expressing malignancies.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"93"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00686-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CD226 plays a vital role in NK cell cytotoxicity, interacting with its ligands on tumor targets. Acute myeloid leukemia (AML) cells have developed mechanisms to escape NK cell cytotoxicity, including inducing downregulation of CD226 on NK cells. Induced pluripotent stem cell -derived NK (iPSC-NK) cells offer an important source of standardized off-the-shelf NK cell therapy to treat AML patients. In this study, we engineered iPSC-NK cells with CD226 to assess the ability of killing AML cells. iPSC-NK cells engineered with CD226 have a typical NK cell phenotype and demonstrate improved anti-AML activity and multiple cytokines releasing at low effector-to-target ratios. Transcriptomic analysis revealed upregulation of immune effector function pathways associated with cytotoxicity and immune activation in CD226-overexpression iPSC-NK cells. In an AML xenograft model, mice treated with CD226 overexpression iPSC-NK cells exhibited significantly reduced leukemia burden, prolonged survival, decreased systemic inflammation compared to those treated with Control iPSC-NK cells. Overall, our study provided evidence that iPSC derived-NK cells engineered with CD226 represent a promising candidate for off-the-shelf immunotherapy, particularly in AML and other CD226 ligand-expressing malignancies.

经CD226工程修饰的ipsc衍生NK细胞可有效控制急性髓系白血病。
CD226在NK细胞毒性中发挥重要作用,与肿瘤靶点上的配体相互作用。急性髓性白血病(AML)细胞已经发展出逃避NK细胞细胞毒性的机制,包括诱导NK细胞上CD226的下调。诱导多能干细胞衍生的NK (iPSC-NK)细胞为治疗AML患者提供了标准化的现成NK细胞疗法的重要来源。在这项研究中,我们用CD226修饰iPSC-NK细胞来评估杀伤AML细胞的能力。CD226修饰的iPSC-NK细胞具有典型的NK细胞表型,并表现出更高的抗aml活性和低效靶比释放的多种细胞因子。转录组学分析显示,在cd226过表达的iPSC-NK细胞中,与细胞毒性和免疫激活相关的免疫效应功能通路上调。在AML异种移植模型中,与对照组iPSC-NK细胞相比,用CD226过表达iPSC-NK细胞治疗的小鼠表现出显著减轻白血病负担,延长生存期,减少全身炎症。总的来说,我们的研究提供了证据,证明iPSC衍生的CD226工程nk细胞是一种有希望的现成免疫治疗候选者,特别是在AML和其他表达CD226配体的恶性肿瘤中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信