{"title":"Development and validation of an improved volumetric breast density estimation model using the ResNet technique.","authors":"Yoshiyuki Asai, Mika Yamamuro, Takahiro Yamada, Yuichi Kimura, Kazunari Ishii, Yusuke Nakamura, Yujiro Otsuka, Yohan Kondo","doi":"10.1088/2057-1976/adecac","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Temporal changes in volumetric breast density (VBD) may serve as prognostic biomarkers for predicting the risk of future breast cancer development. However, accurately measuring VBD from archived x-ray mammograms remains challenging. In a previous study, we proposed a method to estimate volumetric breast density using imaging parameters (tube voltage, tube current, and exposure time) and patient age. This approach, based on a multiple regression model, achieved a determination coefficient (R<sup>2</sup>) of 0.868.<i>Approach</i>. In this study, we developed and applied machine learning models-Random Forest, XG-Boost-and the deep learning model Residual Network (ResNet) to the same dataset. Model performance was assessed using several metrics: determination coefficient, correlation coefficient, root mean square error, mean absolute error, root mean square percentage error, and mean absolute percentage error. A five-fold cross-validation was conducted to ensure robust validation.<i>Main results</i>. The best-performing fold resulted in R<sup>2</sup>values of 0.895, 0.907, and 0.918 for Random Forest, XG-Boost, and ResNet, respectively, all surpassing the previous study's results. ResNet consistently achieved the lowest error values across all metrics.<i>Significance</i>. These findings suggest that ResNet successfully achieved the task of accurately determining VBD from past mammography-a task that has not been realised to date. We are confident that this achievement contributes to advancing research aimed at predicting future risks of breast cancer development by enabling high-accuracy time-series analyses of retrospective VBD.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adecac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Temporal changes in volumetric breast density (VBD) may serve as prognostic biomarkers for predicting the risk of future breast cancer development. However, accurately measuring VBD from archived x-ray mammograms remains challenging. In a previous study, we proposed a method to estimate volumetric breast density using imaging parameters (tube voltage, tube current, and exposure time) and patient age. This approach, based on a multiple regression model, achieved a determination coefficient (R2) of 0.868.Approach. In this study, we developed and applied machine learning models-Random Forest, XG-Boost-and the deep learning model Residual Network (ResNet) to the same dataset. Model performance was assessed using several metrics: determination coefficient, correlation coefficient, root mean square error, mean absolute error, root mean square percentage error, and mean absolute percentage error. A five-fold cross-validation was conducted to ensure robust validation.Main results. The best-performing fold resulted in R2values of 0.895, 0.907, and 0.918 for Random Forest, XG-Boost, and ResNet, respectively, all surpassing the previous study's results. ResNet consistently achieved the lowest error values across all metrics.Significance. These findings suggest that ResNet successfully achieved the task of accurately determining VBD from past mammography-a task that has not been realised to date. We are confident that this achievement contributes to advancing research aimed at predicting future risks of breast cancer development by enabling high-accuracy time-series analyses of retrospective VBD.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.