{"title":"The role of the solvent molecule in the crystal packing arrangements of hydrated salts formed by ethacridine and fluorobenzoic acids.","authors":"Artur Mirocki, Mattia Lopresti","doi":"10.1107/S2052520625004433","DOIUrl":null,"url":null,"abstract":"<p><p>Three novel hydrated salts of ethacridine: 2-fluorobenzoate dihydrate, 3-fluorobenzoate monohydrate and 4-fluorobenzoate monohydrate were synthesized and structurally characterized using single-crystal X-ray diffraction. Analysis of intermolecular interactions in the crystal packing revealed that the number of water molecules in the asymmetric unit determines the formation of distinct centrosymmetric supramolecular synthons: [...water...acid...]<sub>2</sub> and [...water...water...acid...]<sub>2</sub>. Hirshfeld surface analysis and lattice energy calculations were exploited to characterize intermolecular interactions and to elucidate the influence of small stereochemical differences among the three fluorobenzoate isomers on the crystal packing of the obtained molecular complexes.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"395-406"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520625004433","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three novel hydrated salts of ethacridine: 2-fluorobenzoate dihydrate, 3-fluorobenzoate monohydrate and 4-fluorobenzoate monohydrate were synthesized and structurally characterized using single-crystal X-ray diffraction. Analysis of intermolecular interactions in the crystal packing revealed that the number of water molecules in the asymmetric unit determines the formation of distinct centrosymmetric supramolecular synthons: [...water...acid...]2 and [...water...water...acid...]2. Hirshfeld surface analysis and lattice energy calculations were exploited to characterize intermolecular interactions and to elucidate the influence of small stereochemical differences among the three fluorobenzoate isomers on the crystal packing of the obtained molecular complexes.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.