{"title":"Conjugated Silicate Nanodroplets in Lunar Regolith: Unraveling Impact-Driven Phase Separation","authors":"Yiheng Dai, Zhiheng Xie, Zezhou Li, Tianyi Jia, Ruimin Wang, Zongjun Yin, Bing Shen, Jihan Zhou","doi":"10.1029/2025JE009028","DOIUrl":null,"url":null,"abstract":"<p>Meteoroid impacts, a key process of space weathering, significantly alter the structures, compositions and properties of lunar regolith. However, the phase separation phenomena, common in lunar regolith and induced by impact, remain poorly understood. This uncertainty arises from the structural complexity and the scarcity of identified impact-induced phase separation features. Here we report the impact-induced formation of chemically distinct amorphous silicate nanodroplets, including iron-rich droplets within a silicon-rich glass matrix and vice versa, on the surface of a Chang'e-5 lunar regolith grain. These nanodroplets are partially ripened aggregates, and their formation is attributed to metastable liquid immiscibility driven by local chemical heterogeneities and rapid quenching. Additionally, troilite-kamacite remnants and skeletal crystallites of ilmenite and apatite provide direct evidence of impact and fast post-impact quenching, respectively. These findings suggest that quenched impact melts in airless bodies can undergo unmixing, forming immiscible conjugated nanodroplets, and exhibiting diverse behaviors under specific post-impact conditions.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JE009028","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Meteoroid impacts, a key process of space weathering, significantly alter the structures, compositions and properties of lunar regolith. However, the phase separation phenomena, common in lunar regolith and induced by impact, remain poorly understood. This uncertainty arises from the structural complexity and the scarcity of identified impact-induced phase separation features. Here we report the impact-induced formation of chemically distinct amorphous silicate nanodroplets, including iron-rich droplets within a silicon-rich glass matrix and vice versa, on the surface of a Chang'e-5 lunar regolith grain. These nanodroplets are partially ripened aggregates, and their formation is attributed to metastable liquid immiscibility driven by local chemical heterogeneities and rapid quenching. Additionally, troilite-kamacite remnants and skeletal crystallites of ilmenite and apatite provide direct evidence of impact and fast post-impact quenching, respectively. These findings suggest that quenched impact melts in airless bodies can undergo unmixing, forming immiscible conjugated nanodroplets, and exhibiting diverse behaviors under specific post-impact conditions.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.