{"title":"Gaussian Process Latent Variable Modeling for Few-Shot Time Series Forecasting","authors":"Yunyao Cheng;Chenjuan Guo;Kaixuan Chen;Kai Zhao;Bin Yang;Jiandong Xie;Christian S. Jensen;Feiteng Huang;Kai Zheng","doi":"10.1109/TKDE.2025.3573673","DOIUrl":null,"url":null,"abstract":"Accurate time series forecasting is crucial for optimizing resource allocation, industrial production, and urban management, particularly with the growth of cyber-physical and IoT systems. However, limited training sample availability in fields like physics and biology poses significant challenges. Existing models struggle to capture long-term dependencies and to model diverse meta-knowledge explicitly in few-shot scenarios. To address these issues, we propose MetaGP, a meta-learning-based Gaussian process latent variable model that uses a Gaussian process kernel function to capture long-term dependencies and to maintain strong correlations in time series. We also introduce Kernel Association Search (KAS) as a novel meta-learning component to explicitly model meta-knowledge, thereby enhancing both interpretability and prediction accuracy. We study MetaGP on simulated and real-world few-shot datasets, showing that it is capable of state-of-the-art prediction accuracy. We also find that MetaGP can capture long-term dependencies and can model meta-knowledge, thereby providing valuable insights into complex time series patterns.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 8","pages":"4604-4619"},"PeriodicalIF":8.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11020984/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate time series forecasting is crucial for optimizing resource allocation, industrial production, and urban management, particularly with the growth of cyber-physical and IoT systems. However, limited training sample availability in fields like physics and biology poses significant challenges. Existing models struggle to capture long-term dependencies and to model diverse meta-knowledge explicitly in few-shot scenarios. To address these issues, we propose MetaGP, a meta-learning-based Gaussian process latent variable model that uses a Gaussian process kernel function to capture long-term dependencies and to maintain strong correlations in time series. We also introduce Kernel Association Search (KAS) as a novel meta-learning component to explicitly model meta-knowledge, thereby enhancing both interpretability and prediction accuracy. We study MetaGP on simulated and real-world few-shot datasets, showing that it is capable of state-of-the-art prediction accuracy. We also find that MetaGP can capture long-term dependencies and can model meta-knowledge, thereby providing valuable insights into complex time series patterns.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.