Deep learning approaches for estimating maximum wall deflection in excavations with inconsistent clay stratigraphy

Vinh V. Le , HongGiang Nguyen , Nguyen Huu Ngu
{"title":"Deep learning approaches for estimating maximum wall deflection in excavations with inconsistent clay stratigraphy","authors":"Vinh V. Le ,&nbsp;HongGiang Nguyen ,&nbsp;Nguyen Huu Ngu","doi":"10.1016/j.aiig.2025.100140","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations. Six major geotechnical parameters were studied. Statistical methods, such as pair plots and Pearson correlation, highlighted excavation depth (correlation coefficient = 0.82) as the most significant factor. For method prediction, five deep learning models (CNN, LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM) were built. The CNN-BiLSTM model excelled in training performance (R<sup>2</sup> = 0.98, RMSE = 0.02), while BiLSTM reached superior testing results (R<sup>2</sup> = 0.85, RMSE = 0.06), suggesting greater generalization ability. Based on the feature importance analysis from model weights, excavation depth, stiffness ratio, and bracing spacing were ranked as the highest contributors. This point verified a lack of prediction bias on residual plots and high model agreement with measured values on Taylor diagrams (correlation coefficient 0.92). The effectiveness of integrated techniques was reliably assured for predicting wall deformation. This approach facilitates more accurate and efficient geotechnical design and provides engineers with improved tools for risk evaluation and decision-making in deep excavation projects.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 2","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654412500036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations. Six major geotechnical parameters were studied. Statistical methods, such as pair plots and Pearson correlation, highlighted excavation depth (correlation coefficient = 0.82) as the most significant factor. For method prediction, five deep learning models (CNN, LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM) were built. The CNN-BiLSTM model excelled in training performance (R2 = 0.98, RMSE = 0.02), while BiLSTM reached superior testing results (R2 = 0.85, RMSE = 0.06), suggesting greater generalization ability. Based on the feature importance analysis from model weights, excavation depth, stiffness ratio, and bracing spacing were ranked as the highest contributors. This point verified a lack of prediction bias on residual plots and high model agreement with measured values on Taylor diagrams (correlation coefficient 0.92). The effectiveness of integrated techniques was reliably assured for predicting wall deformation. This approach facilitates more accurate and efficient geotechnical design and provides engineers with improved tools for risk evaluation and decision-making in deep excavation projects.
不一致粘土地层条件下挖掘最大壁挠度估计的深度学习方法
本文提出了一种结合探索性数据分析的深度学习体系结构,用于估计深基坑中墙体的最大挠度。研究了6个主要岩土参数。通过配对图和Pearson相关等统计方法,挖掘深度(相关系数= 0.82)是最显著的影响因素。在方法预测方面,建立了CNN、LSTM、BiLSTM、CNN-LSTM和CNN-BiLSTM五个深度学习模型。CNN-BiLSTM模型具有较好的训练性能(R2 = 0.98, RMSE = 0.02),而BiLSTM模型具有较好的测试结果(R2 = 0.85, RMSE = 0.06),具有较强的泛化能力。基于模型权重特征重要性分析,挖掘深度、刚度比和支撑间距是影响最大的因素。这一点证实了残差图上没有预测偏差,模型与泰勒图上的实测值高度吻合(相关系数0.92)。综合技术的有效性为预测围岩变形提供了可靠的保证。该方法有助于提高岩土工程设计的准确性和效率,为深基坑工程的风险评估和决策提供了改进的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信