Learning dynamical systems from data: Gradient-based dictionary optimization

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Mohammad Tabish , Neil K. Chada , Stefan Klus
{"title":"Learning dynamical systems from data: Gradient-based dictionary optimization","authors":"Mohammad Tabish ,&nbsp;Neil K. Chada ,&nbsp;Stefan Klus","doi":"10.1016/j.physd.2025.134822","DOIUrl":null,"url":null,"abstract":"<div><div>The Koopman operator plays a crucial role in analyzing the global behavior of dynamical systems. Existing data-driven methods for approximating the Koopman operator or discovering the governing equations of the underlying system typically require a fixed set of basis functions, also called <em>dictionary</em>. The optimal choice of basis functions is highly problem-dependent and often requires domain knowledge. We present a novel gradient descent-based optimization framework for learning suitable and interpretable basis functions from data and show how it can be used in combination with EDMD, SINDy, and PDE-FIND. We illustrate the efficacy of the proposed approach with the aid of various benchmark problems such as the Ornstein–Uhlenbeck process, Chua’s circuit, a nonlinear heat equation, as well as protein-folding data.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134822"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002994","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Koopman operator plays a crucial role in analyzing the global behavior of dynamical systems. Existing data-driven methods for approximating the Koopman operator or discovering the governing equations of the underlying system typically require a fixed set of basis functions, also called dictionary. The optimal choice of basis functions is highly problem-dependent and often requires domain knowledge. We present a novel gradient descent-based optimization framework for learning suitable and interpretable basis functions from data and show how it can be used in combination with EDMD, SINDy, and PDE-FIND. We illustrate the efficacy of the proposed approach with the aid of various benchmark problems such as the Ornstein–Uhlenbeck process, Chua’s circuit, a nonlinear heat equation, as well as protein-folding data.
从数据中学习动态系统:基于梯度的字典优化
库普曼算子在分析动力系统的全局行为中起着至关重要的作用。现有的用于逼近库普曼算子或发现底层系统控制方程的数据驱动方法通常需要一组固定的基函数,也称为字典。基函数的最优选择是高度依赖于问题的,通常需要领域知识。我们提出了一种新的基于梯度下降的优化框架,用于从数据中学习合适的和可解释的基函数,并展示了如何将其与EDMD, SINDy和PDE-FIND结合使用。我们借助各种基准问题(如Ornstein-Uhlenbeck过程、Chua电路、非线性热方程以及蛋白质折叠数据)来说明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信