Precision irrigation with AI-driven optimization of plant electrophysiology

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Yiting Chen , Devon Scott , Hieu Trung Tran , Yan Sum Shirley Yip , Soomin Shin , Woo Soo Kim
{"title":"Precision irrigation with AI-driven optimization of plant electrophysiology","authors":"Yiting Chen ,&nbsp;Devon Scott ,&nbsp;Hieu Trung Tran ,&nbsp;Yan Sum Shirley Yip ,&nbsp;Soomin Shin ,&nbsp;Woo Soo Kim","doi":"10.1016/j.atech.2025.101169","DOIUrl":null,"url":null,"abstract":"<div><div>As global water scarcity intensifies and agricultural demands rise, there is a critical need for efficient irrigation management systems. Traditional autonomous irrigation solutions often depend on soil moisture and environmental sensors that indirectly reflect plant water status, leading to suboptimal irrigation practices. In this study, we introduce an innovative AI-powered autonomous irrigation system that leverages plant electrophysiological (EP) signals to directly monitor real-time plant water status for the first time. Our system integrates EP sensors, real-time signal acquisition and processing, and a convolutional neural network (CNN)-based predictive model to optimize irrigation conditions. Results indicate that EP signals can effectively differentiate between various irrigation levels with a temporal resolution of seconds, significantly enhancing water-use efficiency through real-time feedback. By optimizing water consumption using the AI algorithm, our approach can achieve at least a 10 % reduction in water use while maintaining optimal water conditions for crops. This method represents a promising advancement for precision agriculture and sustainable water management.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101169"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525004010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

As global water scarcity intensifies and agricultural demands rise, there is a critical need for efficient irrigation management systems. Traditional autonomous irrigation solutions often depend on soil moisture and environmental sensors that indirectly reflect plant water status, leading to suboptimal irrigation practices. In this study, we introduce an innovative AI-powered autonomous irrigation system that leverages plant electrophysiological (EP) signals to directly monitor real-time plant water status for the first time. Our system integrates EP sensors, real-time signal acquisition and processing, and a convolutional neural network (CNN)-based predictive model to optimize irrigation conditions. Results indicate that EP signals can effectively differentiate between various irrigation levels with a temporal resolution of seconds, significantly enhancing water-use efficiency through real-time feedback. By optimizing water consumption using the AI algorithm, our approach can achieve at least a 10 % reduction in water use while maintaining optimal water conditions for crops. This method represents a promising advancement for precision agriculture and sustainable water management.

Abstract Image

人工智能驱动植物电生理优化的精准灌溉
随着全球水资源短缺的加剧和农业需求的增加,迫切需要有效的灌溉管理系统。传统的自主灌溉解决方案通常依赖于土壤湿度和环境传感器,这些传感器间接反映了植物的水分状况,导致灌溉实践不理想。在这项研究中,我们介绍了一种创新的人工智能驱动的自主灌溉系统,该系统首次利用植物电生理(EP)信号直接监测植物的实时水分状况。我们的系统集成了EP传感器、实时信号采集和处理以及基于卷积神经网络(CNN)的预测模型,以优化灌溉条件。结果表明,EP信号可以有效区分不同灌溉水平,时间分辨率为秒级,通过实时反馈显著提高水分利用效率。通过使用人工智能算法优化用水量,我们的方法可以在保持作物最佳水分条件的同时,至少减少10%的用水量。这种方法代表了精准农业和可持续水管理的一个有希望的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信