Antonio Sarno , Rodrigo T. Massera , Gianfranco Paternò , Paolo Cardarelli , Nicholas Marshall , Hilde Bosmans , Kristina Bliznakova
{"title":"Uncertainty and normalized glandular dose evaluations in digital mammography and digital breast tomosynthesis with a machine learning methodology","authors":"Antonio Sarno , Rodrigo T. Massera , Gianfranco Paternò , Paolo Cardarelli , Nicholas Marshall , Hilde Bosmans , Kristina Bliznakova","doi":"10.1016/j.ejmp.2025.105043","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To predict the normalized glandular dose (DgN) coefficients and the related uncertainty in mammography and digital breast tomosynthesis (DBT) using a machine learning algorithm and patient-like digital breast models.</div></div><div><h3>Methodology</h3><div>126 patient-like digital breast phantoms were used for DgN Monte Carlo ground truth calculations. An Automatic Relevance Determination Regression algorithm was used to predict DgN from anatomical breast features. These features included compressed breast thickness, glandular fraction by volume, glandular volume, center of mass and standard deviation of the glandular tissue distribution in the cranio-caudal direction. An algorithm for data imputation was explored to account for avoiding the use of the latter two features.</div></div><div><h3>Results</h3><div>5-fold cross validation showed that the predictive model provides an estimation of DgN with 1% average difference from the ground truth; this difference was less than 3% in 50% of the cases. The average uncertainty of the estimated DgN values was 9%. Excluding the information related to the glandular distribution increased this uncertainty to 17% without inducing a significant discrepancy in estimated DgN values, with half of the predicted cases differing from the ground truth by less than 9%. The data imputation algorithm reduced the estimated uncertainty, without restoring the original performance. Predictive performance improved by increasing tube voltage.</div></div><div><h3>Conclusion</h3><div>The proposed methodology predicts the DgN in mammography and DBT for patient-derived breasts with an uncertainty below 9%. Predicting test evaluations reported 1% average difference from the ground truth, with 50% of the cohort cases differing by less than 5%.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"136 ","pages":"Article 105043"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S112017972500153X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To predict the normalized glandular dose (DgN) coefficients and the related uncertainty in mammography and digital breast tomosynthesis (DBT) using a machine learning algorithm and patient-like digital breast models.
Methodology
126 patient-like digital breast phantoms were used for DgN Monte Carlo ground truth calculations. An Automatic Relevance Determination Regression algorithm was used to predict DgN from anatomical breast features. These features included compressed breast thickness, glandular fraction by volume, glandular volume, center of mass and standard deviation of the glandular tissue distribution in the cranio-caudal direction. An algorithm for data imputation was explored to account for avoiding the use of the latter two features.
Results
5-fold cross validation showed that the predictive model provides an estimation of DgN with 1% average difference from the ground truth; this difference was less than 3% in 50% of the cases. The average uncertainty of the estimated DgN values was 9%. Excluding the information related to the glandular distribution increased this uncertainty to 17% without inducing a significant discrepancy in estimated DgN values, with half of the predicted cases differing from the ground truth by less than 9%. The data imputation algorithm reduced the estimated uncertainty, without restoring the original performance. Predictive performance improved by increasing tube voltage.
Conclusion
The proposed methodology predicts the DgN in mammography and DBT for patient-derived breasts with an uncertainty below 9%. Predicting test evaluations reported 1% average difference from the ground truth, with 50% of the cohort cases differing by less than 5%.
期刊介绍:
Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics:
Medical Imaging
Radiation Therapy
Radiation Protection
Measuring Systems and Signal Processing
Education and training in Medical Physics
Professional issues in Medical Physics.