Phase equilibria of carbon dioxide + sulfur hexafluoride mixed gas hydrate as fundamental data toward improving the mechanical properties of marine sediments
{"title":"Phase equilibria of carbon dioxide + sulfur hexafluoride mixed gas hydrate as fundamental data toward improving the mechanical properties of marine sediments","authors":"Tasuku Ishikawa , Takeshi Sugahara , Takayuki Hirai , Norimasa Yoshimoto","doi":"10.1016/j.fluid.2025.114525","DOIUrl":null,"url":null,"abstract":"<div><div>Isothermal phase equilibria of carbon dioxide (CO<sub>2</sub>) + sulfur hexafluoride (SF<sub>6</sub>) mixed gas hydrate at temperatures of 281.85 K, 284.05 K, 288.05 K, 291.05 K, 291.74 K, and 292.20 K were measured so as to improve the mechanical properties of marine sediment by hydrate cementation. The addition of SF<sub>6</sub> significantly reduces the equilibrium pressure of CO<sub>2</sub>-containing mixed gas hydrate at each temperature. At temperatures above the quadruple point Q<sub>2</sub> (pure CO<sub>2</sub> hydrate + aqueous + CO<sub>2</sub>-rich liquid + vapor phases) of 283.22 K, the four-phase (mixed gas hydrate + aqueous + guest-rich liquid + vapor phases) equilibrium point(s) exists(exist) on the isotherms of the CO<sub>2</sub>+SF<sub>6</sub> mixed gas hydrate system. The four-phase equilibrium curve was connected from the quadruple point Q<sub>2</sub> of pure CO<sub>2</sub> hydrate to that of pure SF<sub>6</sub> hydrate and had a maximum temperature point at 292.0 ± 0.2 K, which is higher than both the Q<sub>2</sub> temperatures of pure CO<sub>2</sub> hydrate and pure SF<sub>6</sub> hydrate. Therefore, the addition of SF<sub>6</sub> to CO<sub>2</sub> brings a significant effect to expand the thermodynamically stable region of CO<sub>2</sub>-containing mixed gas hydrate in order for simultaneous CO<sub>2</sub> storage and sediment improvement to be realized at marine sediment.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"599 ","pages":"Article 114525"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001955","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Isothermal phase equilibria of carbon dioxide (CO2) + sulfur hexafluoride (SF6) mixed gas hydrate at temperatures of 281.85 K, 284.05 K, 288.05 K, 291.05 K, 291.74 K, and 292.20 K were measured so as to improve the mechanical properties of marine sediment by hydrate cementation. The addition of SF6 significantly reduces the equilibrium pressure of CO2-containing mixed gas hydrate at each temperature. At temperatures above the quadruple point Q2 (pure CO2 hydrate + aqueous + CO2-rich liquid + vapor phases) of 283.22 K, the four-phase (mixed gas hydrate + aqueous + guest-rich liquid + vapor phases) equilibrium point(s) exists(exist) on the isotherms of the CO2+SF6 mixed gas hydrate system. The four-phase equilibrium curve was connected from the quadruple point Q2 of pure CO2 hydrate to that of pure SF6 hydrate and had a maximum temperature point at 292.0 ± 0.2 K, which is higher than both the Q2 temperatures of pure CO2 hydrate and pure SF6 hydrate. Therefore, the addition of SF6 to CO2 brings a significant effect to expand the thermodynamically stable region of CO2-containing mixed gas hydrate in order for simultaneous CO2 storage and sediment improvement to be realized at marine sediment.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.