Secondary Poincaré section for characterizing dynamical behaviours of nonlinear systems

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhengyuan Zhang, Liming Dai
{"title":"Secondary Poincaré section for characterizing dynamical behaviours of nonlinear systems","authors":"Zhengyuan Zhang,&nbsp;Liming Dai","doi":"10.1016/j.chaos.2025.116849","DOIUrl":null,"url":null,"abstract":"<div><div>An innovative secondary Poincaré section method is presented in this research to characterize the behaviours of nonlinear dynamical systems, especially quasiperiodicity and chaos. To circumvent the difficulty of computing the intersection between a discrete point set and a plane, a closed curve is iteratively mapped to approach the Poincaré attractor. In this way, the proposed method effectively defines a secondary Poincaré plot that is more accurate and rigorous than existing methods. It lays the groundwork for dimensionality reduction analysis for nonlinear dynamical systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116849"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925008628","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative secondary Poincaré section method is presented in this research to characterize the behaviours of nonlinear dynamical systems, especially quasiperiodicity and chaos. To circumvent the difficulty of computing the intersection between a discrete point set and a plane, a closed curve is iteratively mapped to approach the Poincaré attractor. In this way, the proposed method effectively defines a secondary Poincaré plot that is more accurate and rigorous than existing methods. It lays the groundwork for dimensionality reduction analysis for nonlinear dynamical systems.
描述非线性系统动力学行为的二次庞卡罗剖面
本文提出了一种新颖的二阶庞卡罗剖面法来描述非线性动力系统,特别是准周期性和混沌系统的行为。为了避免离散点集与平面交点的计算困难,我们迭代地映射一条闭合曲线来逼近庞卡罗吸引子。这样,所提出的方法有效地定义了一个比现有方法更精确、更严格的二次poincar图。它为非线性动力系统的降维分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信