Bernstein-type inequalities and nonparametric estimation under near-epoch dependence

IF 9.9 3区 经济学 Q1 ECONOMICS
Zihao Yuan , Martin Spindler
{"title":"Bernstein-type inequalities and nonparametric estimation under near-epoch dependence","authors":"Zihao Yuan ,&nbsp;Martin Spindler","doi":"10.1016/j.jeconom.2025.106054","DOIUrl":null,"url":null,"abstract":"<div><div>The main contributions of this paper are twofold. First, we derive Bernstein-type inequalities for irregularly spaced data under near-epoch dependent (NED) conditions and deterministic domain-expanding-infill (DEI) asymptotics. By introducing the concept of “effective dimension” to describe the geometric structure of sampled locations, we illustrate – unlike previous research – that the sharpness of these inequalities is affected by this effective dimension. To our knowledge, ours is the first study to report this phenomenon and show Bernstein-type inequalities under deterministic DEI asymptotics. This work represents a direct generalization of the work of Xu and Lee (2018), thus marking an important contribution to the topic. As a corollary, we derive a Bernstein-type inequality for irregularly spaced <span><math><mi>α</mi></math></span>-mixing random fields under DEI asymptotics. Our second contribution is to apply these inequalities to explore the attainability of optimal convergence rates for the local linear conditional mean estimator under algebraic NED conditions. Our results illustrate how the effective dimension affects assumptions of dependence. This finding refines the results of Jenish (2012) and extends the work of Hansen (2008), Vogt (2012), Chen and Christensen (2015) and Li, Lu, and Linton (2012).</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106054"},"PeriodicalIF":9.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001083","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main contributions of this paper are twofold. First, we derive Bernstein-type inequalities for irregularly spaced data under near-epoch dependent (NED) conditions and deterministic domain-expanding-infill (DEI) asymptotics. By introducing the concept of “effective dimension” to describe the geometric structure of sampled locations, we illustrate – unlike previous research – that the sharpness of these inequalities is affected by this effective dimension. To our knowledge, ours is the first study to report this phenomenon and show Bernstein-type inequalities under deterministic DEI asymptotics. This work represents a direct generalization of the work of Xu and Lee (2018), thus marking an important contribution to the topic. As a corollary, we derive a Bernstein-type inequality for irregularly spaced α-mixing random fields under DEI asymptotics. Our second contribution is to apply these inequalities to explore the attainability of optimal convergence rates for the local linear conditional mean estimator under algebraic NED conditions. Our results illustrate how the effective dimension affects assumptions of dependence. This finding refines the results of Jenish (2012) and extends the work of Hansen (2008), Vogt (2012), Chen and Christensen (2015) and Li, Lu, and Linton (2012).
近历元依赖下的bernstein型不等式和非参数估计
本文的主要贡献有两个方面。首先,我们在近历元相关(NED)条件和确定性域扩展-填充(DEI)渐近条件下,导出了不规则间隔数据的bernstein型不等式。通过引入“有效维数”的概念来描述采样位置的几何结构,我们说明-与以往的研究不同-这些不平等的清晰度受到有效维数的影响。据我们所知,我们的研究首次报道了这一现象,并展示了确定性DEI渐近下的伯恩斯坦型不等式。这项工作代表了Xu和Lee(2018)的工作的直接概括,从而标志着对该主题的重要贡献。作为推论,在DEI渐近条件下,我们得到了不规则间隔α-混合随机场的一个bernstein型不等式。我们的第二个贡献是应用这些不等式来探索在代数NED条件下局部线性条件平均估计的最优收敛速率的可得性。我们的结果说明了有效维度如何影响依赖的假设。这一发现完善了Jenish(2012)的结果,并扩展了Hansen(2008)、Vogt(2012)、Chen和Christensen(2015)以及Li、Lu和Linton(2012)的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信