{"title":"Gradient Projection For Continual Parameter- Efficient Tuning.","authors":"Jingyang Qiao,Zhizhong Zhang,Xin Tan,Yanyun Qu,Wensheng Zhang,Zhi Han,Yuan Xie","doi":"10.1109/tpami.2025.3587032","DOIUrl":null,"url":null,"abstract":"Parameter-efficient tunings (PETs) have demonstrated impressive performance and promising perspectives in training large models, while they are still confronted with a common problem: the trade-off between learning new content and protecting old knowledge, leading to zero-shot generalization collapse, and cross-modal hallucination. In this paper, we reformulate Adapter, LoRA, Prefix-tuning, and Prompt-tuning from the perspective of gradient projection, and firstly propose a unified framework called Parameter Efficient Gradient Projection (PEGP). We introduce orthogonal gradient projection into different PET paradigms and theoretically demonstrate that the orthogonal condition for the gradient can effectively resist forgetting even for large-scale models. It therefore modifies the gradient towards the direction that has less impact on the old feature space, with less extra memory space and training time. We extensively evaluate our method with different backbones, including ViT and CLIP, on diverse datasets, and experiments comprehensively demonstrate its efficiency in reducing forgetting in class, online class, domain, task, and multi-modality continual settings.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"109 1","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3587032","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Parameter-efficient tunings (PETs) have demonstrated impressive performance and promising perspectives in training large models, while they are still confronted with a common problem: the trade-off between learning new content and protecting old knowledge, leading to zero-shot generalization collapse, and cross-modal hallucination. In this paper, we reformulate Adapter, LoRA, Prefix-tuning, and Prompt-tuning from the perspective of gradient projection, and firstly propose a unified framework called Parameter Efficient Gradient Projection (PEGP). We introduce orthogonal gradient projection into different PET paradigms and theoretically demonstrate that the orthogonal condition for the gradient can effectively resist forgetting even for large-scale models. It therefore modifies the gradient towards the direction that has less impact on the old feature space, with less extra memory space and training time. We extensively evaluate our method with different backbones, including ViT and CLIP, on diverse datasets, and experiments comprehensively demonstrate its efficiency in reducing forgetting in class, online class, domain, task, and multi-modality continual settings.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.