{"title":"[Effect and mechanism of LncRNA EFRL on homocysteine-induced atherosclerosis in macrophage efferocytosis].","authors":"Jiaqi Yang, Zhenghao Zhang, Fang Ma, Tongtong Xia, Honglin Liu, Jiantuan Xiong, Shengchao Ma, Yideng Jiang, Yinju Hao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Objective To investigate the effect and mechanism of Efferocytosis Relatived LncRNA (EFRL) on homocysteine-induced atherosclerosis in macrophage efferocytosis. Methods RAW264.7 cells were cultured in vitro, and the Control group (0 μmol/L Hcy) and Hcy intervention group (100 μmol/L Hcy) were set up. After GapmeR transfection of macrophages with Hcy intervention, EFRL knockdown negative control group (Hcy combined with LNA-NC) and EFRL knockdown group (Hcy combined with LNA-EFRL) were set up. High-throughput sequencing was applied for different expression of LncRNA MSTRG. 88917.16 (EFRL), UCSC was used to analyze its conservation, CPC and CPAT were used to analyze its ability to encode proteins, and GO and KEGG were used to analyze related biological functions. The localization of LncRNA EFRL in macrophages was analyzed by nucleoplasmic separation and RNA-FISH. Quantitative real-time PCR was used to detect the expression levels of LncRNA EFRL and its target gene SPAST in Hcy-treated macrophages. The apoptosis rate of Jurkat cells induced by UV was detected by flow cytometry. In vitro efferocytosis assay combined with immunofluorescence technique was used to analyze macrophage efferocytosis. ELISA was used to detect the levels of interleukin 1β(IL-1β) and IL-18. Results The new LncRNA MSTRG.88917.16 was identified and named EFRL(Efferocytosis Relatived LncRNA). UCSC, CPC and CPAT analyses showed that LncEFRL is highly conserved and does not have the ability to encode proteins. GO and KEGG analyses suggested that LncEFRL may be involved in macrophage efferocytosis. LncRNA EFRL was localized in the nucleus of macrophages as determined by nucleoplasmic separation and RNA-FISH. In comparison to the Control group, the expression levels of LncRNA EFRL and its target gene SPAST in the Hcy group were increased. In comparison to the Control group (0 min), the apoptosis rate of the experimental group (15, 30 min) Annexin V is more than 85%. Compared with Hcy combined with LNA-NC group, Hcy combined with LNA-EFRL group had enhanced macrophage efferocytosis and reduced levels of inflammatory factors. Compared with Hcy combined with LNA-NC group, the expression level of SPAST in Hcy combined with LNA-EFRL group was decreased. Conclusion Inhibition of EFRL expression can alleviate the process of Hcy inhibiting macrophage efferocytosis, and the mechanism is related to the regulation of the downstream target gene SPAST by EFRL.</p>","PeriodicalId":61378,"journal":{"name":"细胞与分子免疫学杂志","volume":"41 7","pages":"577-584"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"细胞与分子免疫学杂志","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective To investigate the effect and mechanism of Efferocytosis Relatived LncRNA (EFRL) on homocysteine-induced atherosclerosis in macrophage efferocytosis. Methods RAW264.7 cells were cultured in vitro, and the Control group (0 μmol/L Hcy) and Hcy intervention group (100 μmol/L Hcy) were set up. After GapmeR transfection of macrophages with Hcy intervention, EFRL knockdown negative control group (Hcy combined with LNA-NC) and EFRL knockdown group (Hcy combined with LNA-EFRL) were set up. High-throughput sequencing was applied for different expression of LncRNA MSTRG. 88917.16 (EFRL), UCSC was used to analyze its conservation, CPC and CPAT were used to analyze its ability to encode proteins, and GO and KEGG were used to analyze related biological functions. The localization of LncRNA EFRL in macrophages was analyzed by nucleoplasmic separation and RNA-FISH. Quantitative real-time PCR was used to detect the expression levels of LncRNA EFRL and its target gene SPAST in Hcy-treated macrophages. The apoptosis rate of Jurkat cells induced by UV was detected by flow cytometry. In vitro efferocytosis assay combined with immunofluorescence technique was used to analyze macrophage efferocytosis. ELISA was used to detect the levels of interleukin 1β(IL-1β) and IL-18. Results The new LncRNA MSTRG.88917.16 was identified and named EFRL(Efferocytosis Relatived LncRNA). UCSC, CPC and CPAT analyses showed that LncEFRL is highly conserved and does not have the ability to encode proteins. GO and KEGG analyses suggested that LncEFRL may be involved in macrophage efferocytosis. LncRNA EFRL was localized in the nucleus of macrophages as determined by nucleoplasmic separation and RNA-FISH. In comparison to the Control group, the expression levels of LncRNA EFRL and its target gene SPAST in the Hcy group were increased. In comparison to the Control group (0 min), the apoptosis rate of the experimental group (15, 30 min) Annexin V is more than 85%. Compared with Hcy combined with LNA-NC group, Hcy combined with LNA-EFRL group had enhanced macrophage efferocytosis and reduced levels of inflammatory factors. Compared with Hcy combined with LNA-NC group, the expression level of SPAST in Hcy combined with LNA-EFRL group was decreased. Conclusion Inhibition of EFRL expression can alleviate the process of Hcy inhibiting macrophage efferocytosis, and the mechanism is related to the regulation of the downstream target gene SPAST by EFRL.