Leveraging generative AI to assist biocuration of medical actions for rare disease.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-06-12 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf141
Enock Niyonkuru, J Harry Caufield, Leigh C Carmody, Michael A Gargano, Sabrina Toro, Patricia L Whetzel, Hannah Blau, Mauricio Soto Gomez, Elena Casiraghi, Leonardo Chimirri, Justin T Reese, Giorgio Valentini, Melissa A Haendel, Christopher J Mungall, Peter N Robinson
{"title":"Leveraging generative AI to assist biocuration of medical actions for rare disease.","authors":"Enock Niyonkuru, J Harry Caufield, Leigh C Carmody, Michael A Gargano, Sabrina Toro, Patricia L Whetzel, Hannah Blau, Mauricio Soto Gomez, Elena Casiraghi, Leonardo Chimirri, Justin T Reese, Giorgio Valentini, Melissa A Haendel, Christopher J Mungall, Peter N Robinson","doi":"10.1093/bioadv/vbaf141","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Structured representations of clinical data can support computational analysis of individuals and cohorts, and ontologies representing disease entities and phenotypic abnormalities are now commonly used for translational research. The Medical Action Ontology (MAxO) provides a computational representation of treatments and other actions taken for clinical management. Currently, manual biocuration is used to annotate MAxO terms to rare diseases. However, it is challenging to scale manual curation to comprehensively capture information about medical actions for the more than 10 000 rare diseases.</p><p><strong>Results: </strong>We present AutoMAxO, a semi-automated workflow that leverages Large Language Models (LLMs) to streamline MAxO biocuration. AutoMAxO first uses LLMs to retrieve candidate curations from abstracts of relevant publications. Next, the candidate curations are matched to ontology terms from MAxO, Human Phenotype Ontology (HPO), and MONDO disease ontology via a combination of LLMs and post-processing techniques. Finally, the matched terms are presented in a structured form to a human curator for approval. We used this approach to process abstracts related to 37 rare genetic diseases and identified 958 novel treatment annotations that were transferred to the MAxO annotation dataset.</p><p><strong>Availability and implementation: </strong>AutoMAxO is a Python package freely available at https://github.com/monarch-initiative/automaxo.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf141"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Structured representations of clinical data can support computational analysis of individuals and cohorts, and ontologies representing disease entities and phenotypic abnormalities are now commonly used for translational research. The Medical Action Ontology (MAxO) provides a computational representation of treatments and other actions taken for clinical management. Currently, manual biocuration is used to annotate MAxO terms to rare diseases. However, it is challenging to scale manual curation to comprehensively capture information about medical actions for the more than 10 000 rare diseases.

Results: We present AutoMAxO, a semi-automated workflow that leverages Large Language Models (LLMs) to streamline MAxO biocuration. AutoMAxO first uses LLMs to retrieve candidate curations from abstracts of relevant publications. Next, the candidate curations are matched to ontology terms from MAxO, Human Phenotype Ontology (HPO), and MONDO disease ontology via a combination of LLMs and post-processing techniques. Finally, the matched terms are presented in a structured form to a human curator for approval. We used this approach to process abstracts related to 37 rare genetic diseases and identified 958 novel treatment annotations that were transferred to the MAxO annotation dataset.

Availability and implementation: AutoMAxO is a Python package freely available at https://github.com/monarch-initiative/automaxo.

Abstract Image

Abstract Image

Abstract Image

利用生成式人工智能协助罕见疾病医疗行动的生物定位。
动机:临床数据的结构化表示可以支持个体和群体的计算分析,表征疾病实体和表型异常的本体论现在通常用于转化研究。医疗行动本体(Medical Action Ontology, MAxO)为临床管理提供了治疗和其他行动的计算表示。目前,对罕见病的MAxO术语的注释主要采用手工生物标记。然而,要扩大人工策展的规模,以全面捕获10000多种罕见疾病的医疗行动信息,这是一项挑战。结果:我们提出了AutoMAxO,一个半自动化的工作流程,利用大型语言模型(llm)来简化MAxO生物定位。AutoMAxO首先使用法学硕士从相关出版物的摘要中检索候选策展。接下来,通过结合llm和后处理技术,将候选策展词与MAxO、人类表型本体(HPO)和MONDO疾病本体中的本体术语进行匹配。最后,匹配的术语以结构化的形式呈现给人类管理员审批。我们使用这种方法处理了37种罕见遗传疾病的相关摘要,并确定了958种新的治疗注释,这些注释被转移到MAxO注释数据集。可用性和实现:AutoMAxO是一个Python包,可在https://github.com/monarch-initiative/automaxo免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信