Shisong Chen, Hongjie Xu, Ning Li, Yang Yang, Ruxi Pang, Shuwei Zhang, Junjie Qiao, Hao Chen
{"title":"The scaffold protein DLG4 facilitates RNF63-mediated ubiquitination and degradation of STAT3 in non-small cell lung cancer.","authors":"Shisong Chen, Hongjie Xu, Ning Li, Yang Yang, Ruxi Pang, Shuwei Zhang, Junjie Qiao, Hao Chen","doi":"10.1186/s12964-025-02334-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Disks-large homolog (DLG) family has been found to govern multiple key processes in human cancers. However, their role in non-small cell lung cancer (NSCLC) remains unknown.</p><p><strong>Methods: </strong>The expression of DLG4 was determined by immunoblotting and q-PCR. The interacting proteins of DLG4 were identified by affinity purification mass spectrometry. The ubiquitination level of STAT3 was verified by denaturation-IP. The protein interactions were determined by co-IP. The clinical significance of DLG4, RNF63, and STAT3 was evaluated by immunohistochemical staining.</p><p><strong>Results: </strong>In this study, by evaluating the expression levels of human DLG protein (DLG1-DLG5), we found that DLG4 is significantly downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), two major types of NSCLC. DLG4 overexpression impairs cell proliferation and epithelial-mesenchymal transition migration (EMT) of NSCLC cells. The xenograft model also verifies the inhibitory effects of DLG4 on tumor growth in vivo. Moreover, we determined that DLG4 functions as a novel regulator of STAT3. Mechanistically, DLG4 directly interacts with STAT3 and recruits E3 ubiquitin ligase RNF63 (MKRN3) to STAT3, which promotes STAT3 K48-linked polyubiquitination and proteasome-mediated degradation. Importantly, in human NSCLC specimens, endogenous DLG4 and RNF63 expression levels are inversely correlated with that of STAT3. Moreover, low DLG4 and RNF63 expression correlates with poor patient survival in NSCLC.</p><p><strong>Conclusion: </strong>our findings define the role of DLG4 that can diminish NSCLC cell proliferation and tumorigenesis through degrading STAT3 in an RNF63-dependent manner. This work suggests a new treatment strategy against NSCLC caused by aberrant activation of STAT3.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"325"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02334-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Disks-large homolog (DLG) family has been found to govern multiple key processes in human cancers. However, their role in non-small cell lung cancer (NSCLC) remains unknown.
Methods: The expression of DLG4 was determined by immunoblotting and q-PCR. The interacting proteins of DLG4 were identified by affinity purification mass spectrometry. The ubiquitination level of STAT3 was verified by denaturation-IP. The protein interactions were determined by co-IP. The clinical significance of DLG4, RNF63, and STAT3 was evaluated by immunohistochemical staining.
Results: In this study, by evaluating the expression levels of human DLG protein (DLG1-DLG5), we found that DLG4 is significantly downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), two major types of NSCLC. DLG4 overexpression impairs cell proliferation and epithelial-mesenchymal transition migration (EMT) of NSCLC cells. The xenograft model also verifies the inhibitory effects of DLG4 on tumor growth in vivo. Moreover, we determined that DLG4 functions as a novel regulator of STAT3. Mechanistically, DLG4 directly interacts with STAT3 and recruits E3 ubiquitin ligase RNF63 (MKRN3) to STAT3, which promotes STAT3 K48-linked polyubiquitination and proteasome-mediated degradation. Importantly, in human NSCLC specimens, endogenous DLG4 and RNF63 expression levels are inversely correlated with that of STAT3. Moreover, low DLG4 and RNF63 expression correlates with poor patient survival in NSCLC.
Conclusion: our findings define the role of DLG4 that can diminish NSCLC cell proliferation and tumorigenesis through degrading STAT3 in an RNF63-dependent manner. This work suggests a new treatment strategy against NSCLC caused by aberrant activation of STAT3.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.