{"title":"Machine learning detection of epileptic seizure onset zone from iEEG.","authors":"Nawara Mahmood Broti, Masaki Iwasaki, Yumie Ono","doi":"10.1007/s13534-025-00480-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of seizure onset zones (SOZ) is essential for the surgical treatment of epilepsy. This narrative review examines recent advances in machine learning approaches for SOZ localization using intracranial electroencephalography (iEEG) data. Existing studies are analyzed while addressing key questions: What machine learning techniques are used for SOZ localization? How effective are these methods? What are the limitations, and what solutions can drive further progress in the field? This narrative review examined peer-reviewed studies that employed machine learning techniques for SOZ localization using iEEG data. The selected studies were analyzed to identify trends in machine learning applications, performance metrics, benefits, and challenges associated with SOZ identification. The review highlights the increasing adoption of machine learning for SOZ localization, mostly with supervised approaches. Particularly support vector machine (SVM) using high frequency oscillation (HFO) biomarker feature being the most prevalent. High accuracy and sensitivity, especially in studies with smaller sample sizes are reported. However, patient-wise validation reveals limited generalizability. Additionally, ambiguity in SOZ definition and the scarcity of open-access iEEG datasets continue to hinder progress and reproducibility in the field. Machine learning offers significant potential for advancing SOZ localization. Development of more robust algorithms, integration of multimodal data, and greater model interpretability, can improve model reliability, ensure consistency, and enhance real-world applicability, thereby transforming the future of SOZ localization.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 4","pages":"677-692"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00480-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of seizure onset zones (SOZ) is essential for the surgical treatment of epilepsy. This narrative review examines recent advances in machine learning approaches for SOZ localization using intracranial electroencephalography (iEEG) data. Existing studies are analyzed while addressing key questions: What machine learning techniques are used for SOZ localization? How effective are these methods? What are the limitations, and what solutions can drive further progress in the field? This narrative review examined peer-reviewed studies that employed machine learning techniques for SOZ localization using iEEG data. The selected studies were analyzed to identify trends in machine learning applications, performance metrics, benefits, and challenges associated with SOZ identification. The review highlights the increasing adoption of machine learning for SOZ localization, mostly with supervised approaches. Particularly support vector machine (SVM) using high frequency oscillation (HFO) biomarker feature being the most prevalent. High accuracy and sensitivity, especially in studies with smaller sample sizes are reported. However, patient-wise validation reveals limited generalizability. Additionally, ambiguity in SOZ definition and the scarcity of open-access iEEG datasets continue to hinder progress and reproducibility in the field. Machine learning offers significant potential for advancing SOZ localization. Development of more robust algorithms, integration of multimodal data, and greater model interpretability, can improve model reliability, ensure consistency, and enhance real-world applicability, thereby transforming the future of SOZ localization.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.