Seunghyun Gwak, Sooyoung Yang, Heawon Jeong, Junhu Park, Myungjoo Kang
{"title":"Efficient sparse-view medical image classification for low radiation and rapid COVID-19 diagnosis.","authors":"Seunghyun Gwak, Sooyoung Yang, Heawon Jeong, Junhu Park, Myungjoo Kang","doi":"10.1007/s13534-025-00478-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a deep learning-based diagnostic model called the Projection-wise Masked Autoencoder (ProMAE) for rapid and accurate COVID-19 diagnosis using sparse-view CT images. ProMAE employs a column-wise masking strategy during pre-training to effectively learn critical diagnostic features from sinograms, even under extremely sparse conditions. The trained ProMAE can directly classify sparse-view sinograms without requiring CT image reconstruction. Experiments on sparse-view data with 50%, 75%, 85%, 95%, and 99% sparsity show that ProMAE achieves a diagnostic accuracy of over 95% at all sparsity levels and, in particular, outperforms ResNet, ConvNeXt, and conventional MAE models in COVID-19 diagnosis in environments with 85% or higher sparsity. This capability is especially advantageous for the development of portable and flexible imaging systems during large-scale outbreaks such as COVID-19, as it ensures accurate diagnosis while minimizing radiation exposure, making it a vital tool in resource-limited and high-demand settings.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 4","pages":"785-795"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00478-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a deep learning-based diagnostic model called the Projection-wise Masked Autoencoder (ProMAE) for rapid and accurate COVID-19 diagnosis using sparse-view CT images. ProMAE employs a column-wise masking strategy during pre-training to effectively learn critical diagnostic features from sinograms, even under extremely sparse conditions. The trained ProMAE can directly classify sparse-view sinograms without requiring CT image reconstruction. Experiments on sparse-view data with 50%, 75%, 85%, 95%, and 99% sparsity show that ProMAE achieves a diagnostic accuracy of over 95% at all sparsity levels and, in particular, outperforms ResNet, ConvNeXt, and conventional MAE models in COVID-19 diagnosis in environments with 85% or higher sparsity. This capability is especially advantageous for the development of portable and flexible imaging systems during large-scale outbreaks such as COVID-19, as it ensures accurate diagnosis while minimizing radiation exposure, making it a vital tool in resource-limited and high-demand settings.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.