{"title":"Scalable Precision Psychiatry With an Objective Measure of Psychological Stress: Prospective Real-World Study.","authors":"Helena Wang, Norman Farb, Bechara Saab","doi":"10.2196/56086","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Before meaningful progress toward precision psychiatry is possible, objective (unbiased) assessment of patient mental well-being must be validated and adopted broadly.</p><p><strong>Objective: </strong>This study aims to compare the fidelity of a precision psychiatry therapy recommendation algorithm when trained with an objective quantification of psychological stress versus subjective ecological momentary assessments (EMAs) of stress and mood.</p><p><strong>Methods: </strong>From 2786 unique individuals engaging between March 2015 and December 2022 in English language psychotherapy sessions and providing pre- and postsession self-report and facial biometric data via a mobile health platform (Mobio Interactive Pte Ltd, Singapore), analysis was conducted on 67 \"super users\" that completed a minimum of 28 sessions with all pre- and postsession measures. The platform used has previously demonstrated reduced psychiatric symptom severity and improved overall mental well-being. Psychotherapy recordings (\"sessions\") within the platform, available asynchronously and on demand, span mindfulness, meditation, cognitive behavioral therapy, client-centered therapy, music therapy, and self-hypnosis. The platform also has the unusual ability to rapidly assess mental well-being without bias via an easy-to-use objective measure of psychological stress derived from artificial intelligence-based analysis of facial biomarkers (objective stress level [OSL]). In tandem with the objective measure, EMAs obtain self-reported values of stress (SRS) and mood (SRM). ∆OSL, ∆SRS, and ∆SRM (with delta referring to the presession subtracted from the postsession measurement) were used to independently train a therapy recommendation algorithm designed to predict what future sessions would prove most efficacious for each individual. Algorithm predictions were compared against the efficacy of the individual's self-selected sessions.</p><p><strong>Results: </strong>The objective measure of psychological stress provided a differentiated delta for the measurement of therapeutic efficacy compared to the 2 EMA deltas, as shown by clear divergence in ∆OSL vs ∆SRS or ∆SRM (r<0.03), while the EMA deltas showed significant convergence (r=0.53, P<.01). The recommendation algorithm selected increasingly efficacious therapy sessions as a function of training data when trained with either ∆OSL (F<sub>1,16</sub>=5.37, P=.03) or ∆SRM data (F<sub>1,16</sub>=3.69, P<.05). However, the sequential improvement in prediction efficacy only surpassed the efficacy of self-selected therapy when the algorithm was trained using objective data (P<.01). Training the algorithm with EMA data showed potential trends that did not reach significance (∆SRS: P=.09; ∆SRM: P=.12). As a final insight, self-selected therapy sessions were overrepresented among the algorithmically recommended sessions, an effect most pronounced when the algorithm was trained with ∆OSL data (F<sub>1,14</sub>=30.94, P<.001).</p><p><strong>Conclusions: </strong>These prospective data demonstrate that a rapid, scalable, and objective measure of psychological stress, in combination with a robust recommendation algorithm, can autonomously identify clinically meaningful therapy for individuals. More broadly, this work illustrates the potential for objective data on mental well-being to improve precision psychiatry and the capacity for mental health care professionals to match global demand.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT06265909; https://clinicaltrials.gov/ct2/show/NCT06265909.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e56086"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/56086","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Before meaningful progress toward precision psychiatry is possible, objective (unbiased) assessment of patient mental well-being must be validated and adopted broadly.
Objective: This study aims to compare the fidelity of a precision psychiatry therapy recommendation algorithm when trained with an objective quantification of psychological stress versus subjective ecological momentary assessments (EMAs) of stress and mood.
Methods: From 2786 unique individuals engaging between March 2015 and December 2022 in English language psychotherapy sessions and providing pre- and postsession self-report and facial biometric data via a mobile health platform (Mobio Interactive Pte Ltd, Singapore), analysis was conducted on 67 "super users" that completed a minimum of 28 sessions with all pre- and postsession measures. The platform used has previously demonstrated reduced psychiatric symptom severity and improved overall mental well-being. Psychotherapy recordings ("sessions") within the platform, available asynchronously and on demand, span mindfulness, meditation, cognitive behavioral therapy, client-centered therapy, music therapy, and self-hypnosis. The platform also has the unusual ability to rapidly assess mental well-being without bias via an easy-to-use objective measure of psychological stress derived from artificial intelligence-based analysis of facial biomarkers (objective stress level [OSL]). In tandem with the objective measure, EMAs obtain self-reported values of stress (SRS) and mood (SRM). ∆OSL, ∆SRS, and ∆SRM (with delta referring to the presession subtracted from the postsession measurement) were used to independently train a therapy recommendation algorithm designed to predict what future sessions would prove most efficacious for each individual. Algorithm predictions were compared against the efficacy of the individual's self-selected sessions.
Results: The objective measure of psychological stress provided a differentiated delta for the measurement of therapeutic efficacy compared to the 2 EMA deltas, as shown by clear divergence in ∆OSL vs ∆SRS or ∆SRM (r<0.03), while the EMA deltas showed significant convergence (r=0.53, P<.01). The recommendation algorithm selected increasingly efficacious therapy sessions as a function of training data when trained with either ∆OSL (F1,16=5.37, P=.03) or ∆SRM data (F1,16=3.69, P<.05). However, the sequential improvement in prediction efficacy only surpassed the efficacy of self-selected therapy when the algorithm was trained using objective data (P<.01). Training the algorithm with EMA data showed potential trends that did not reach significance (∆SRS: P=.09; ∆SRM: P=.12). As a final insight, self-selected therapy sessions were overrepresented among the algorithmically recommended sessions, an effect most pronounced when the algorithm was trained with ∆OSL data (F1,14=30.94, P<.001).
Conclusions: These prospective data demonstrate that a rapid, scalable, and objective measure of psychological stress, in combination with a robust recommendation algorithm, can autonomously identify clinically meaningful therapy for individuals. More broadly, this work illustrates the potential for objective data on mental well-being to improve precision psychiatry and the capacity for mental health care professionals to match global demand.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.