Haoyu Deng, Wan Yi Liang, Leqi Chen, Kate Huang, Rylan Mccallum, Patrick C N Rensen, John H Boyd, Mark Trinder, Liam R Brunham
{"title":"High density lipoprotein attenuates lipopolysaccharide-induced IL-1β activation via scavenger receptor class B type 1.","authors":"Haoyu Deng, Wan Yi Liang, Leqi Chen, Kate Huang, Rylan Mccallum, Patrick C N Rensen, John H Boyd, Mark Trinder, Liam R Brunham","doi":"10.1016/j.jlr.2025.100858","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is the dysregulated immune response to an infection and is a leading cause of mortality. Low levels of high-density lipoprotein (HDL) cholesterol are associated with increased risk of death from sepsis, and increasing levels of HDL by inhibition of cholesteryl ester transfer protein (CETP) has been shown to decrease mortality in mouse models of sepsis. The objective of this study was to investigate the cellular mechanisms by which CETP inhibition and HDL lead to improved survival during sepsis. We found that HDL inhibits lipopolysaccharide (LPS)-induced activation of IL-1β in a mouse model of sepsis. The activation of IL-1β was dependent on the activity of scavenger receptor class B type 1 (SR-B1), and knockdown of SR-B1 significantly attenuated LPS-induced production of IL-1β in macrophages. Additionally, we found that LPS-induced SR-B1 internalization occurs through the endosome-lysosome pathway, which is also likely responsible for LPS degradation in the macrophages. Furthermore, we revealed that raising HDL by CETP inhibition markedly enhanced HDL-mediated anti-inflammatory effects in response to LPS stimulation, and these effects were not due to CETP itself but rather HDL-dependent. Finally, we show that pharmacological inhibition of CETP significantly improved endotoxemia-induced mortality by inhibiting IL-1β production in the liver and circulation after LPS injection. Pathologically, CETP inhibition attenuated LPS-induced diffuse alveolar damage and hepatocyte necrosis, which may contribute to the improved mortality in mice treated with the CETP inhibitor anacetrapib. Taken together, our findings uncover a cellular mechanism by which HDL attenuates LPS-induced pro-inflammatory response via SR-B1-mediated LPS degradation.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100858"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100858","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis is the dysregulated immune response to an infection and is a leading cause of mortality. Low levels of high-density lipoprotein (HDL) cholesterol are associated with increased risk of death from sepsis, and increasing levels of HDL by inhibition of cholesteryl ester transfer protein (CETP) has been shown to decrease mortality in mouse models of sepsis. The objective of this study was to investigate the cellular mechanisms by which CETP inhibition and HDL lead to improved survival during sepsis. We found that HDL inhibits lipopolysaccharide (LPS)-induced activation of IL-1β in a mouse model of sepsis. The activation of IL-1β was dependent on the activity of scavenger receptor class B type 1 (SR-B1), and knockdown of SR-B1 significantly attenuated LPS-induced production of IL-1β in macrophages. Additionally, we found that LPS-induced SR-B1 internalization occurs through the endosome-lysosome pathway, which is also likely responsible for LPS degradation in the macrophages. Furthermore, we revealed that raising HDL by CETP inhibition markedly enhanced HDL-mediated anti-inflammatory effects in response to LPS stimulation, and these effects were not due to CETP itself but rather HDL-dependent. Finally, we show that pharmacological inhibition of CETP significantly improved endotoxemia-induced mortality by inhibiting IL-1β production in the liver and circulation after LPS injection. Pathologically, CETP inhibition attenuated LPS-induced diffuse alveolar damage and hepatocyte necrosis, which may contribute to the improved mortality in mice treated with the CETP inhibitor anacetrapib. Taken together, our findings uncover a cellular mechanism by which HDL attenuates LPS-induced pro-inflammatory response via SR-B1-mediated LPS degradation.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.