{"title":"Performance of a deep-learning-based lung nodule detection system using 0.25-mm thick ultra-high-resolution CT images.","authors":"Haruka Higashibori, Wataru Fukumoto, Sayaka Kusuda, Kazushi Yokomachi, Hidenori Mitani, Yuko Nakamura, Kazuo Awai","doi":"10.1007/s11604-025-01828-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Artificial intelligence (AI) algorithms for lung nodule detection assist radiologists. As their performance using ultra-high-resolution CT (U-HRCT) images has not been evaluated, we investigated the usefulness of 0.25-mm slices at U-HRCT using the commercially available deep-learning-based lung nodule detection (DL-LND) system.</p><p><strong>Materials and methods: </strong>We enrolled 63 patients who underwent U-HRCT for lung cancer and suspected lung cancer. Two board-certified radiologists identified nodules more than 4 mm in diameter on 1-mm HRCT slices and set the reference standard consensually. They recorded all lesions detected on 5-, 1-, and 0.25-mm slices by the DL-LND system. Unidentified nodules were included in the reference standard. To examine the performance of the DL-LND system, the sensitivity, and positive predictive value (PPV) and the number of false positive (FP) nodules were recorded.</p><p><strong>Results: </strong>The mean number of lesions detected on 5-, 1-, and 0.25-mm slices was 5.1, 7.8 and 7.2 per CT scan. On 5-mm slices the sensitivity and PPV were 79.8% and 46.4%; on 1-mm slices they were 91.5% and 34.8%, and on 0.25-mm slices they were 86.7% and 36.1%. The sensitivity was significantly higher on 1- than 5-mm slices (p < 0.01) while the PPV was significantly lower on 1- than 5-mm slices (p < 0.01). A slice thickness of 0.25 mm failed to improve its performance. The mean number of FP nodules on 5-, 1-, and 0.25-mm slices was 2.8, 5.2, and 4.7 per CT scan.</p><p><strong>Conclusion: </strong>We found that 1 mm was the best slice thickness for U-HRCT images using the commercially available DL-LND system.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01828-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Artificial intelligence (AI) algorithms for lung nodule detection assist radiologists. As their performance using ultra-high-resolution CT (U-HRCT) images has not been evaluated, we investigated the usefulness of 0.25-mm slices at U-HRCT using the commercially available deep-learning-based lung nodule detection (DL-LND) system.
Materials and methods: We enrolled 63 patients who underwent U-HRCT for lung cancer and suspected lung cancer. Two board-certified radiologists identified nodules more than 4 mm in diameter on 1-mm HRCT slices and set the reference standard consensually. They recorded all lesions detected on 5-, 1-, and 0.25-mm slices by the DL-LND system. Unidentified nodules were included in the reference standard. To examine the performance of the DL-LND system, the sensitivity, and positive predictive value (PPV) and the number of false positive (FP) nodules were recorded.
Results: The mean number of lesions detected on 5-, 1-, and 0.25-mm slices was 5.1, 7.8 and 7.2 per CT scan. On 5-mm slices the sensitivity and PPV were 79.8% and 46.4%; on 1-mm slices they were 91.5% and 34.8%, and on 0.25-mm slices they were 86.7% and 36.1%. The sensitivity was significantly higher on 1- than 5-mm slices (p < 0.01) while the PPV was significantly lower on 1- than 5-mm slices (p < 0.01). A slice thickness of 0.25 mm failed to improve its performance. The mean number of FP nodules on 5-, 1-, and 0.25-mm slices was 2.8, 5.2, and 4.7 per CT scan.
Conclusion: We found that 1 mm was the best slice thickness for U-HRCT images using the commercially available DL-LND system.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.