The ESCRT protein CHMP5 restricts bone formation by controlling endolysosome-mitochondrion-mediated cell senescence.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-07 DOI:10.7554/eLife.101984
Fan Zhang, Yuan Wang, Luyang Zhang, Chunjie Wang, Deping Chen, Haibo Liu, Ren Xu, Cole M Haynes, Jae-Hyuck Shim, Xianpeng Ge
{"title":"The ESCRT protein CHMP5 restricts bone formation by controlling endolysosome-mitochondrion-mediated cell senescence.","authors":"Fan Zhang, Yuan Wang, Luyang Zhang, Chunjie Wang, Deping Chen, Haibo Liu, Ren Xu, Cole M Haynes, Jae-Hyuck Shim, Xianpeng Ge","doi":"10.7554/eLife.101984","DOIUrl":null,"url":null,"abstract":"<p><p>The dysfunction of the cellular endolysosomal pathway, such as in lysosomal storage diseases, can cause severe musculoskeletal disorders. However, how endolysosomal dysfunction causes musculoskeletal abnormalities remains poorly understood, limiting therapeutic options. Here, we report that CHMP5, a member of the endosomal sorting complex required for transport (ESCRT)-III protein family, is essential to maintain the endolysosomal pathway and regulate bone formation in osteogenic lineage cells. Genetic ablation of <i>Chmp5</i> in mouse osteogenic cells increases bone formation in vivo and in vitro. Mechanistically, <i>Chmp5</i> deletion causes endolysosomal dysfunction by decreasing the VPS4A protein, and CHMP5 overexpression is sufficient to increase the VPS4A protein. Subsequently, endolysosomal dysfunction disturbs mitochondrial functions and increases mitochondrial ROS, ultimately resulting in skeletal cell senescence. Senescent skeletal cells cause abnormal bone formation by combining cell-autonomous and paracrine actions. Importantly, the elimination of senescent cells using senolytic drugs can alleviate musculoskeletal abnormalities in <i>Chmp5</i> conditional knockout mice. Therefore, our results show that cell senescence represents an underpinning mechanism and a therapeutic target for musculoskeletal disorders caused by the aberrant endolysosomal pathway, such as in lysosomal storage diseases. These results also uncover the function and mechanism of CHMP5 in the regulation of cell senescence by affecting the endolysosomal-mitochondrial pathway.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.101984","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dysfunction of the cellular endolysosomal pathway, such as in lysosomal storage diseases, can cause severe musculoskeletal disorders. However, how endolysosomal dysfunction causes musculoskeletal abnormalities remains poorly understood, limiting therapeutic options. Here, we report that CHMP5, a member of the endosomal sorting complex required for transport (ESCRT)-III protein family, is essential to maintain the endolysosomal pathway and regulate bone formation in osteogenic lineage cells. Genetic ablation of Chmp5 in mouse osteogenic cells increases bone formation in vivo and in vitro. Mechanistically, Chmp5 deletion causes endolysosomal dysfunction by decreasing the VPS4A protein, and CHMP5 overexpression is sufficient to increase the VPS4A protein. Subsequently, endolysosomal dysfunction disturbs mitochondrial functions and increases mitochondrial ROS, ultimately resulting in skeletal cell senescence. Senescent skeletal cells cause abnormal bone formation by combining cell-autonomous and paracrine actions. Importantly, the elimination of senescent cells using senolytic drugs can alleviate musculoskeletal abnormalities in Chmp5 conditional knockout mice. Therefore, our results show that cell senescence represents an underpinning mechanism and a therapeutic target for musculoskeletal disorders caused by the aberrant endolysosomal pathway, such as in lysosomal storage diseases. These results also uncover the function and mechanism of CHMP5 in the regulation of cell senescence by affecting the endolysosomal-mitochondrial pathway.

ESCRT蛋白CHMP5通过控制内溶酶体-线粒体介导的细胞衰老来限制骨形成。
细胞内溶酶体途径的功能障碍,如溶酶体贮积病,可引起严重的肌肉骨骼疾病。然而,内溶酶体功能障碍如何导致肌肉骨骼异常仍然知之甚少,限制了治疗选择。在这里,我们报道了CHMP5,作为运输所需的内体分选复合体(ESCRT)-III蛋白家族的成员,在维持内溶酶体途径和调节成骨谱系细胞的骨形成中是必不可少的。基因消融小鼠成骨细胞中的Chmp5可在体内和体外促进骨形成。机制上,Chmp5缺失通过降低VPS4A蛋白导致内溶酶体功能障碍,而Chmp5过表达足以增加VPS4A蛋白。随后,内溶酶体功能障碍扰乱线粒体功能,增加线粒体ROS,最终导致骨骼细胞衰老。衰老的骨骼细胞通过结合细胞自主和旁分泌作用导致异常骨形成。重要的是,使用抗衰老药物消除衰老细胞可以减轻Chmp5条件敲除小鼠的肌肉骨骼异常。因此,我们的研究结果表明,细胞衰老是由异常内溶酶体途径引起的肌肉骨骼疾病的基础机制和治疗靶点,例如溶酶体贮积病。这些结果也揭示了CHMP5通过影响内溶酶体-线粒体途径调控细胞衰老的功能和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信