{"title":"Hippo pathway controls biopterin metabolism to shield adjacent cells from ferroptosis in lung cancer.","authors":"Hao Li, Yohei Kanamori, Akihiro Nita, Ayato Maeda, Tianli Zhang, Kenta Kikuchi, Hiroyuki Yamada, Touya Toyomoto, Mohamed Fathi Saleh, Mayumi Niimura, Hironori Hinokuma, Mayuko Shimoda, Koei Ikeda, Makoto Suzuki, Yoshihiro Komohara, Daisuke Kurotaki, Tomohiro Sawa, Toshiro Moroishi","doi":"10.1038/s44319-025-00515-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in single-cell technologies have uncovered significant cellular diversity in tumors, influencing cancer progression and treatment outcomes. The Hippo pathway controls cell proliferation through its downstream effectors: yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Our analysis of human lung adenocarcinoma and murine models revealed that cancer cells display heterogeneous YAP/TAZ activation levels within tumors. Murine lung cancer cells with high YAP/TAZ activity grow rapidly but are sensitive to ferroptosis, a cell death induced by lipid peroxidation. In contrast, cells with low YAP/TAZ activity grow slowly but resist ferroptosis. Moreover, they protect neighbouring cells from ferroptosis, creating a protective microenvironment that enhances the tumor's resistance to ferroptosis. Mechanistically, inhibiting YAP/TAZ upregulates GTP cyclohydrolase 1 (GCH1), an enzyme critical for the biosynthesis of tetrahydrobiopterin (BH4), which functions as a secretory antioxidant to prevent lipid peroxidation. Pharmacological inhibition of GCH1 sensitizes lung cancer cells to ferroptosis inducers, suggesting a potential therapeutic approach. Our data highlights the non-cell-autonomous roles of the Hippo pathway in creating a ferroptosis-resistant tumor microenvironment.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00515-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in single-cell technologies have uncovered significant cellular diversity in tumors, influencing cancer progression and treatment outcomes. The Hippo pathway controls cell proliferation through its downstream effectors: yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Our analysis of human lung adenocarcinoma and murine models revealed that cancer cells display heterogeneous YAP/TAZ activation levels within tumors. Murine lung cancer cells with high YAP/TAZ activity grow rapidly but are sensitive to ferroptosis, a cell death induced by lipid peroxidation. In contrast, cells with low YAP/TAZ activity grow slowly but resist ferroptosis. Moreover, they protect neighbouring cells from ferroptosis, creating a protective microenvironment that enhances the tumor's resistance to ferroptosis. Mechanistically, inhibiting YAP/TAZ upregulates GTP cyclohydrolase 1 (GCH1), an enzyme critical for the biosynthesis of tetrahydrobiopterin (BH4), which functions as a secretory antioxidant to prevent lipid peroxidation. Pharmacological inhibition of GCH1 sensitizes lung cancer cells to ferroptosis inducers, suggesting a potential therapeutic approach. Our data highlights the non-cell-autonomous roles of the Hippo pathway in creating a ferroptosis-resistant tumor microenvironment.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.