{"title":"Matrix Metalloproteinase-9: A Key Diagnostic Biomarker in Cancer Progression.","authors":"Arpita Srivastava, Jatin Gupta, Shivani Singhal, Hardeep Tulli, Neetu Mishra, Neha Atale, Buddhi Prakash Jain, Christophe Grosset, Bhawna Saxena, Vibha Rani","doi":"10.2174/0113894501371763250628092643","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix metalloproteinase-9, also known as MMP-9, gelatinase B, or 92 kDa type IV collagenase, is an enzyme that belongs to the matrix metalloproteinase (MMP) family. It is involved in the remodeling of the extracellular matrix in various physiological and pathological processes. MMPs are expressed in low, tightly regulated concentrations; their overexpression or dysregulation can lead to diseases, including cancer. MMP-9 is increasingly recognized as a significant drug target in cancer therapy due to its involvement in tumorigenesis, including processes like cell migration, angiogenesis, and pro-apoptotic and anti-apoptotic activities. Despite MMP-9's significance as a cancer target, developing effective inhibitors remains challenging due to MMP structural similarities. Utilizing MMP-9 as a cancer biomarker could advance cancer diagnosis, prognosis, disease monitoring, recurrence prediction, and other procedures. Biosensors are emerging as pivotal tools in cancer diagnosis and treatment, leveraging their ability to detect specific biomarkers associated with various cancers. Recent advancements have led to the development of both cleavage-based and non-cleavage-based biosensors that enable rapid and sensitive analysis at clinically relevant concentrations of biomarkers while allowing specificity and low detection limits, enhancing point-of-care diagnostics. The cleavage-based biosensors leverage the enzymatic activity of MMP-9, utilizing substrates that are specifically cleaved by MMP-9, while the non-cleavage- based biosensors employ affinity methods, such as antibodies and aptamers for detection. The present review aims to evaluate the role of MMP-9 as a significant biomarker in cancer and its detection through innovative biosensor technologies, while exploring its involvement in various cancer- related processes. This review discusses the significance of MMP-9 in cancer progression, highlighting clinical trials that assess MMP-9 inhibitors as potential therapeutic agents to halt metastatic spread. Furthermore, MMP-9 is detected via biosensors, and insights into the translational potential of MMP-9 both as a biomarker for early cancer detection and a viable target for therapeutic intervention are provided, ultimately contributing to improved patient outcomes in oncology.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113894501371763250628092643","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix metalloproteinase-9, also known as MMP-9, gelatinase B, or 92 kDa type IV collagenase, is an enzyme that belongs to the matrix metalloproteinase (MMP) family. It is involved in the remodeling of the extracellular matrix in various physiological and pathological processes. MMPs are expressed in low, tightly regulated concentrations; their overexpression or dysregulation can lead to diseases, including cancer. MMP-9 is increasingly recognized as a significant drug target in cancer therapy due to its involvement in tumorigenesis, including processes like cell migration, angiogenesis, and pro-apoptotic and anti-apoptotic activities. Despite MMP-9's significance as a cancer target, developing effective inhibitors remains challenging due to MMP structural similarities. Utilizing MMP-9 as a cancer biomarker could advance cancer diagnosis, prognosis, disease monitoring, recurrence prediction, and other procedures. Biosensors are emerging as pivotal tools in cancer diagnosis and treatment, leveraging their ability to detect specific biomarkers associated with various cancers. Recent advancements have led to the development of both cleavage-based and non-cleavage-based biosensors that enable rapid and sensitive analysis at clinically relevant concentrations of biomarkers while allowing specificity and low detection limits, enhancing point-of-care diagnostics. The cleavage-based biosensors leverage the enzymatic activity of MMP-9, utilizing substrates that are specifically cleaved by MMP-9, while the non-cleavage- based biosensors employ affinity methods, such as antibodies and aptamers for detection. The present review aims to evaluate the role of MMP-9 as a significant biomarker in cancer and its detection through innovative biosensor technologies, while exploring its involvement in various cancer- related processes. This review discusses the significance of MMP-9 in cancer progression, highlighting clinical trials that assess MMP-9 inhibitors as potential therapeutic agents to halt metastatic spread. Furthermore, MMP-9 is detected via biosensors, and insights into the translational potential of MMP-9 both as a biomarker for early cancer detection and a viable target for therapeutic intervention are provided, ultimately contributing to improved patient outcomes in oncology.
期刊介绍:
Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes.
Current Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of drug targets. The journal also accepts for publication mini- & full-length review articles and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.