Bin Lian, Haohui Zhang, Tao Wang, Yongtian Wang, Xuequn Shang, N Ahmad Aziz, Jialu Hu
{"title":"Inference of gene coexpression networks from single-cell transcriptome data based on variance decomposition analysis.","authors":"Bin Lian, Haohui Zhang, Tao Wang, Yongtian Wang, Xuequn Shang, N Ahmad Aziz, Jialu Hu","doi":"10.1093/bib/bbaf309","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulation varies across different cell types and developmental stages, leading to distinct cellular roles across cellular populations. Investigating cell type-specific gene coexpression is therefore crucial for understanding gene functions and disease pathology. However, reconstructing gene coexpression networks from single-cell transcriptome data is challenging due to artifacts, noise, and data sparsity. Here, we present an efficient method for inference of gene coexpression networks via variance decomposition analysis (GCNVDA) to explore the underlying gene regulatory mechanisms from single-cell transcriptome data. Our model incorporates multiple sources of variability, including a random effect term $G$ to capture gene-level variance and a random effect term $E$ to account for residual errors. We applied GCNVDA to three real-world single-cell datasets, demonstrating that our method outperforms existing state-of-the-art algorithms in both sensitivity and specificity for identifying tissue- or state-specific gene regulations. Furthermore, GCNVDA facilitates the discovery of functional modules that play critical roles in key biological processes such as embryonic development. These findings provide new insights into cell-specific regulatory mechanisms and have the potential to significantly advance research in developmental biology and disease pathology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf309","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gene regulation varies across different cell types and developmental stages, leading to distinct cellular roles across cellular populations. Investigating cell type-specific gene coexpression is therefore crucial for understanding gene functions and disease pathology. However, reconstructing gene coexpression networks from single-cell transcriptome data is challenging due to artifacts, noise, and data sparsity. Here, we present an efficient method for inference of gene coexpression networks via variance decomposition analysis (GCNVDA) to explore the underlying gene regulatory mechanisms from single-cell transcriptome data. Our model incorporates multiple sources of variability, including a random effect term $G$ to capture gene-level variance and a random effect term $E$ to account for residual errors. We applied GCNVDA to three real-world single-cell datasets, demonstrating that our method outperforms existing state-of-the-art algorithms in both sensitivity and specificity for identifying tissue- or state-specific gene regulations. Furthermore, GCNVDA facilitates the discovery of functional modules that play critical roles in key biological processes such as embryonic development. These findings provide new insights into cell-specific regulatory mechanisms and have the potential to significantly advance research in developmental biology and disease pathology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.