Maria Sindeeva, Alexander Telepov, Nikita Ivanisenko, Tatiana Shashkova, Kuzma Khrabrov, Artem Tsypin, Artur Kadurin, Olga Kardymon
{"title":"AFToolkit: a framework for molecular modeling of proteins with AlphaFold-derived representations.","authors":"Maria Sindeeva, Alexander Telepov, Nikita Ivanisenko, Tatiana Shashkova, Kuzma Khrabrov, Artem Tsypin, Artur Kadurin, Olga Kardymon","doi":"10.1093/bib/bbaf324","DOIUrl":null,"url":null,"abstract":"<p><p>A key challenge in protein engineering is understanding how mutations affect protein fitness and stability. Most of current state-of-the-art models fine-tune protein structure prediction or protein language models or even pretrain their own. Despite its widespread use within computational workflows, AlphaFold2 exhibits limited sensitivity in assessing the effects of amino acid point mutations on protein structure, thereby constraining its utility in sequence design and protein engineering. In this work, we propose a simple modification of AlphaFold2 inference that improves the model's capacity to capture the structural impacts of amino acid mutations. We achieve this by discarding the multiple sequence alignment and masking the template in recycling stages. Moreover, we introduce AFToolkit, a framework that leverages the embeddings of the modified AlphaFold2 model and simple adapter models to solve multiple protein engineering tasks. In contrast to other methods, our approach does not require fine-tuning the AlphaFold2 model or pretraining a new model from scratch on large datasets. It also supports handling multiple mutations, insertions, and deletions by directly modifying the input protein sequence. The proposed approach achieves strong performance across established benchmarks in terms of Spearman correlation: $0.68$ on PTMul, $0.60$ on cDNA-indel, and $0.57$ on C380.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf324","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A key challenge in protein engineering is understanding how mutations affect protein fitness and stability. Most of current state-of-the-art models fine-tune protein structure prediction or protein language models or even pretrain their own. Despite its widespread use within computational workflows, AlphaFold2 exhibits limited sensitivity in assessing the effects of amino acid point mutations on protein structure, thereby constraining its utility in sequence design and protein engineering. In this work, we propose a simple modification of AlphaFold2 inference that improves the model's capacity to capture the structural impacts of amino acid mutations. We achieve this by discarding the multiple sequence alignment and masking the template in recycling stages. Moreover, we introduce AFToolkit, a framework that leverages the embeddings of the modified AlphaFold2 model and simple adapter models to solve multiple protein engineering tasks. In contrast to other methods, our approach does not require fine-tuning the AlphaFold2 model or pretraining a new model from scratch on large datasets. It also supports handling multiple mutations, insertions, and deletions by directly modifying the input protein sequence. The proposed approach achieves strong performance across established benchmarks in terms of Spearman correlation: $0.68$ on PTMul, $0.60$ on cDNA-indel, and $0.57$ on C380.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.