Genome-wide identification and expression analysis of the HvGATA gene family under abiotic stresses in barley (Hordeum vulgare L.).

IF 3.7 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yan Zhao, Chengxin Yin, Ruixi Xing, Jianbin Zeng, Xuehuan Dai, Dengan Xu, Wenxing Liu, Wujun Ma
{"title":"Genome-wide identification and expression analysis of the HvGATA gene family under abiotic stresses in barley (Hordeum vulgare L.).","authors":"Yan Zhao, Chengxin Yin, Ruixi Xing, Jianbin Zeng, Xuehuan Dai, Dengan Xu, Wenxing Liu, Wujun Ma","doi":"10.1186/s12864-025-11834-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>GATA transcription factors play crucial roles in plant growth and development, especially in response to environmental stress. Although GATA genes have been studied and identified in various plants, research on these genes in barley is relatively limited.</p><p><strong>Results: </strong>This study identified the GATA gene family and analyzed its gene structure, chromosome distribution, evolutionary analysis, and expression patterns of the HvGATAgene family in barley. The results showed that 27 HvGATA genes are unevenly distributed across seven chromosomes and divided into four subfamilies with similar structures within the same subfamily. Gene synthesis analysis revealed that HvGATA gene family has undergone significant purifying selection. It is noteworthy that the promoter regions of HvGATA genes displayed many cis-acting elements associated with stress responses and hormone regulation. Additionally, the 27 identified genes are predominantly involved in responses to inorganic substances, as indicated by the Gene Ontology (GO) enrichment analysis. The majority of miRNAs that regulate these genes are also capable of modulating abiotic stress responses. Furthermore, expression analysis confirms that the majority of HvGATA genes participate in the regulation of abiotic stresses.</p><p><strong>Conclusion: </strong>In summary, this study contribute to our understanding of important role of HvGATAs in barley, providing a foundation for further exploration of gene function and target genes related to stress responses.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"637"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11834-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: GATA transcription factors play crucial roles in plant growth and development, especially in response to environmental stress. Although GATA genes have been studied and identified in various plants, research on these genes in barley is relatively limited.

Results: This study identified the GATA gene family and analyzed its gene structure, chromosome distribution, evolutionary analysis, and expression patterns of the HvGATAgene family in barley. The results showed that 27 HvGATA genes are unevenly distributed across seven chromosomes and divided into four subfamilies with similar structures within the same subfamily. Gene synthesis analysis revealed that HvGATA gene family has undergone significant purifying selection. It is noteworthy that the promoter regions of HvGATA genes displayed many cis-acting elements associated with stress responses and hormone regulation. Additionally, the 27 identified genes are predominantly involved in responses to inorganic substances, as indicated by the Gene Ontology (GO) enrichment analysis. The majority of miRNAs that regulate these genes are also capable of modulating abiotic stress responses. Furthermore, expression analysis confirms that the majority of HvGATA genes participate in the regulation of abiotic stresses.

Conclusion: In summary, this study contribute to our understanding of important role of HvGATAs in barley, providing a foundation for further exploration of gene function and target genes related to stress responses.

大麦HvGATA基因家族在非生物胁迫下的全基因组鉴定及表达分析。
背景:GATA转录因子在植物生长发育,特别是对环境胁迫的响应中起着至关重要的作用。虽然GATA基因已经在多种植物中被研究和鉴定,但对这些基因在大麦中的研究相对有限。结果:本研究鉴定了大麦中GATA基因家族,并分析了GATA基因家族的基因结构、染色体分布、进化分析和表达模式。结果表明,27个HvGATA基因不均匀分布在7条染色体上,分为4个亚家族,在同一亚家族中具有相似的结构。基因合成分析表明,HvGATA基因家族经历了显著的纯化选择。值得注意的是,HvGATA基因的启动子区域显示了许多与应激反应和激素调节相关的顺式作用元件。此外,基因本体(GO)富集分析表明,鉴定的27个基因主要参与对无机物的反应。大多数调节这些基因的mirna也能够调节非生物应激反应。此外,表达分析证实大部分HvGATA基因参与非生物胁迫的调控。结论:本研究有助于我们了解HvGATAs在大麦中的重要作用,为进一步探索与胁迫应答相关的基因功能和靶基因奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信