A spheroid model that recapitulates the protective role of the lymph node microenvironment and serves as a platform for drug testing in chronic lymphocytic leukemia
Elisa Lenti, Edoardo Visentin, Engin Bojnik, Alessia Neroni, Martina Franchino, Daniela Talarico, Nicolò Sacchetti, Lydia Scarfò, Aurora Maurizio, Jose Manuel Garcia-Manteiga, Paolo Ghia, Andrea Brendolan
{"title":"A spheroid model that recapitulates the protective role of the lymph node microenvironment and serves as a platform for drug testing in chronic lymphocytic leukemia","authors":"Elisa Lenti, Edoardo Visentin, Engin Bojnik, Alessia Neroni, Martina Franchino, Daniela Talarico, Nicolò Sacchetti, Lydia Scarfò, Aurora Maurizio, Jose Manuel Garcia-Manteiga, Paolo Ghia, Andrea Brendolan","doi":"10.1002/hem3.70170","DOIUrl":null,"url":null,"abstract":"<p>Chronic lymphocytic leukemia (CLL) B cells are characterized by a propensity to undergo rapid apoptosis when cultured in vitro, underscoring the importance of the tissue microenvironment for disease survival. One of the major limitations in studying the role of the microenvironment in tumor development and drug response is the inadequacy of conventional two-dimensional (2D) in vitro assays to physiologically reconstruct the complex spatial organization and interactions of cells in their natural lymphoid niches. To overcome this limitation, we developed a novel in vitro 3D lymph node-like spheroid model of the leukemic microenvironment by culturing human CLL cells with fibroblastic reticular cells (FRCs). FRCs are a key structural component of secondary lymphoid organs and are emerging as crucial players in tissue homeostasis and immune responses. Our results demonstrate that CLL spheroids maintain the physiological cellular ratio between FRCs and leukemic cells over time and protect tumor cells from apoptosis by mimicking the protective effects of the microenvironment. This was further demonstrated by venetoclax treatment that showed reduced apoptosis in 3D compared to a 2D setting. Importantly, the spheroids promote a gene expression profile more aligned with that of CLL cells in lymphoid tissues. The spheroid model provides a straightforward, quick-to-use platform for investigating drug efficacy under conditions that better replicate the natural lymph node microenvironment. This 3D lymph node-like spheroid model could serve as a valuable tool for studying tumor biology and the protective effects of the stromal microenvironment, and for testing therapeutic strategies in a more clinically relevant setting.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 7","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70170","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic lymphocytic leukemia (CLL) B cells are characterized by a propensity to undergo rapid apoptosis when cultured in vitro, underscoring the importance of the tissue microenvironment for disease survival. One of the major limitations in studying the role of the microenvironment in tumor development and drug response is the inadequacy of conventional two-dimensional (2D) in vitro assays to physiologically reconstruct the complex spatial organization and interactions of cells in their natural lymphoid niches. To overcome this limitation, we developed a novel in vitro 3D lymph node-like spheroid model of the leukemic microenvironment by culturing human CLL cells with fibroblastic reticular cells (FRCs). FRCs are a key structural component of secondary lymphoid organs and are emerging as crucial players in tissue homeostasis and immune responses. Our results demonstrate that CLL spheroids maintain the physiological cellular ratio between FRCs and leukemic cells over time and protect tumor cells from apoptosis by mimicking the protective effects of the microenvironment. This was further demonstrated by venetoclax treatment that showed reduced apoptosis in 3D compared to a 2D setting. Importantly, the spheroids promote a gene expression profile more aligned with that of CLL cells in lymphoid tissues. The spheroid model provides a straightforward, quick-to-use platform for investigating drug efficacy under conditions that better replicate the natural lymph node microenvironment. This 3D lymph node-like spheroid model could serve as a valuable tool for studying tumor biology and the protective effects of the stromal microenvironment, and for testing therapeutic strategies in a more clinically relevant setting.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.