Forecasting Inflation From Disaggregated Data

IF 1.5 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wilmer Martínez-Rivera, Eliana González-Molano, Edgar Caicedo-Garcia
{"title":"Forecasting Inflation From Disaggregated Data","authors":"Wilmer Martínez-Rivera,&nbsp;Eliana González-Molano,&nbsp;Edgar Caicedo-Garcia","doi":"10.1002/asmb.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We forecast inflation aggregates for the United States, the United Kingdom, and Colombia using forecasts aggregation of disaggregates and forecasts obtained directly from the aggregate. We implement helpful models for many predictors, such as dimension reduction, shrinkage methods, machine learning models, and traditional time-series models (ARIMA and TAR). We evaluate out-sample forecasts for the period before COVID-19 and the period afterward. It was found that the aggregation of forecasts performs as well as the forecast using the aggregate directly. In some cases, there is a reduction in the forecast error from the disaggregate analysis.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We forecast inflation aggregates for the United States, the United Kingdom, and Colombia using forecasts aggregation of disaggregates and forecasts obtained directly from the aggregate. We implement helpful models for many predictors, such as dimension reduction, shrinkage methods, machine learning models, and traditional time-series models (ARIMA and TAR). We evaluate out-sample forecasts for the period before COVID-19 and the period afterward. It was found that the aggregation of forecasts performs as well as the forecast using the aggregate directly. In some cases, there is a reduction in the forecast error from the disaggregate analysis.

从分类数据预测通胀
我们预测了美国、英国和哥伦比亚的通货膨胀总量,使用的是分类汇总的预测和直接从总量中获得的预测。我们为许多预测器实现了有用的模型,例如降维、收缩方法、机器学习模型和传统的时间序列模型(ARIMA和TAR)。我们评估了COVID-19之前和之后时期的样本外预测。结果表明,集合预测的效果与直接使用集合预测的效果相当。在某些情况下,通过分解分析可以减少预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信