Irene Serrano-Gonzalo, Laura López de Frutos, Maria Sancho-Albero, Mercedes Roca-Espiau, Ralf Köhler, Pilar Giraldo
{"title":"Expression Profiles of Exosomal miRNAs in Gaucher Patients and Their Association With Severity of Bone Involvement","authors":"Irene Serrano-Gonzalo, Laura López de Frutos, Maria Sancho-Albero, Mercedes Roca-Espiau, Ralf Köhler, Pilar Giraldo","doi":"10.1002/jimd.70061","DOIUrl":null,"url":null,"abstract":"<p>Bone manifestations are one of the most prevalent complications in patients with Gaucher disease (GD). Bone involvement is evaluated by using imaging methods, and there are different scores to assess its severity. However, there are no biomarkers that allow us to predict these manifestations. In recent years, several miRNAs have been associated with bone involvement and postulated as excellent bioavailable biomarkers. This study aims to identify a miRNA expression profile from plasma exosomes and to associate it with the severity of bone involvement in patients with GD. This study included 60 untreated patients with GD with bone involvement, who were classified according to the S-MRI score into three groups: mild disease (MiBD; S-MRI < 5), moderate disease (MoBD; S-MRI: 5–11), or severe disease (SBD; S-MRI > 11). Plasma exosomes were purified, and miRNAs were extracted and identified by next-generation sequencing (NGS) technology. Differentially expressed miRNAs were validated by droplet digital PCR (ddPCR). In the patients' groups classified by S-MRI, the median ages (Q1–Q3) were: MiBD 19.0 (4.00–40.00), MoBD 40.5 (28.25–56.00), and SBD 37.5 (31.25–47.00) years. When comparing groups, we found 12 differentially expressed exosomal miRNAs. After validation, four miRNAs were identified as differentially expressed: hsa-miR-127-3p, hsa-miR-184, hsa-miR-197-3p, and hsa-miR-660-5p. Notably, hsa-miR-127-3p, hsa-miR-660-5p, and hsa-miR-184 were correlated with the presence of infarcts, necrosis, and the degree of infiltration into the spine, pelvis, and femur. These three miRNAs could serve as bioavailable biomarkers to assess bone disease in GD, and further revalidation with a higher number of patients.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70061","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Bone manifestations are one of the most prevalent complications in patients with Gaucher disease (GD). Bone involvement is evaluated by using imaging methods, and there are different scores to assess its severity. However, there are no biomarkers that allow us to predict these manifestations. In recent years, several miRNAs have been associated with bone involvement and postulated as excellent bioavailable biomarkers. This study aims to identify a miRNA expression profile from plasma exosomes and to associate it with the severity of bone involvement in patients with GD. This study included 60 untreated patients with GD with bone involvement, who were classified according to the S-MRI score into three groups: mild disease (MiBD; S-MRI < 5), moderate disease (MoBD; S-MRI: 5–11), or severe disease (SBD; S-MRI > 11). Plasma exosomes were purified, and miRNAs were extracted and identified by next-generation sequencing (NGS) technology. Differentially expressed miRNAs were validated by droplet digital PCR (ddPCR). In the patients' groups classified by S-MRI, the median ages (Q1–Q3) were: MiBD 19.0 (4.00–40.00), MoBD 40.5 (28.25–56.00), and SBD 37.5 (31.25–47.00) years. When comparing groups, we found 12 differentially expressed exosomal miRNAs. After validation, four miRNAs were identified as differentially expressed: hsa-miR-127-3p, hsa-miR-184, hsa-miR-197-3p, and hsa-miR-660-5p. Notably, hsa-miR-127-3p, hsa-miR-660-5p, and hsa-miR-184 were correlated with the presence of infarcts, necrosis, and the degree of infiltration into the spine, pelvis, and femur. These three miRNAs could serve as bioavailable biomarkers to assess bone disease in GD, and further revalidation with a higher number of patients.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).