A multi-level contrastive learning-based correction model for semi-supervised fetal echocardiography segmentation

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qi Yu , Danyang Song , Jinzhu Yang , Zhitao Zhang , Song Sun , Haiyang Sun , Yangyang Li , Yao Liu , Yiqiu Qi , Mei Wei , Yiming Liu
{"title":"A multi-level contrastive learning-based correction model for semi-supervised fetal echocardiography segmentation","authors":"Qi Yu ,&nbsp;Danyang Song ,&nbsp;Jinzhu Yang ,&nbsp;Zhitao Zhang ,&nbsp;Song Sun ,&nbsp;Haiyang Sun ,&nbsp;Yangyang Li ,&nbsp;Yao Liu ,&nbsp;Yiqiu Qi ,&nbsp;Mei Wei ,&nbsp;Yiming Liu","doi":"10.1016/j.neucom.2025.130858","DOIUrl":null,"url":null,"abstract":"<div><div>Fetal echocardiography is an important test for diagnosing fetal congenital heart disease (CHD). The apical four-chamber view (A4C) is the most basic and essential view for fetal heart examination. Segmentation of key anatomical structures based on the A4C view provides a basis for functional assessment and disease diagnosis. However, current fetal heart segmentation methods do not fully leverage unlabeled intermediate frames in ultrasound videos. Furthermore, the complex and variable structure of the fetal heart often causes category confusion, significantly affecting the precision and reliability of segmentation. In this paper, we propose a multi-level contrastive learning-based correction model (MLCL-CM) for semi-supervised segmentation of five key cardiac structures in fetal echocardiography. MLCL-CM improves segmentation performance on labeled keyframes by exploiting the large number of unlabeled intermediate frames. To alleviate misclassification problems, we construct positive and negative pairs in category- and pixel-level contrastive learning and introduce two uncertainty quantization techniques to guide the learning of more robust and fine-grained discriminative feature representations in global and local spaces. In addition, we integrate an adaptive correction model to achieve more stable and consistent predictions by dynamically weighting the inconsistent regions. Experimental results on actual A4C views with 100 and 300 fetuses show that the proposed MLCL-CM outperforms the state-of-the-art methods.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130858"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015309","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fetal echocardiography is an important test for diagnosing fetal congenital heart disease (CHD). The apical four-chamber view (A4C) is the most basic and essential view for fetal heart examination. Segmentation of key anatomical structures based on the A4C view provides a basis for functional assessment and disease diagnosis. However, current fetal heart segmentation methods do not fully leverage unlabeled intermediate frames in ultrasound videos. Furthermore, the complex and variable structure of the fetal heart often causes category confusion, significantly affecting the precision and reliability of segmentation. In this paper, we propose a multi-level contrastive learning-based correction model (MLCL-CM) for semi-supervised segmentation of five key cardiac structures in fetal echocardiography. MLCL-CM improves segmentation performance on labeled keyframes by exploiting the large number of unlabeled intermediate frames. To alleviate misclassification problems, we construct positive and negative pairs in category- and pixel-level contrastive learning and introduce two uncertainty quantization techniques to guide the learning of more robust and fine-grained discriminative feature representations in global and local spaces. In addition, we integrate an adaptive correction model to achieve more stable and consistent predictions by dynamically weighting the inconsistent regions. Experimental results on actual A4C views with 100 and 300 fetuses show that the proposed MLCL-CM outperforms the state-of-the-art methods.

Abstract Image

基于多级对比学习的半监督胎儿超声心动图分割校正模型
胎儿超声心动图是诊断胎儿先天性心脏病的一项重要检查。心尖四室位(A4C)是胎儿心脏检查最基本、最重要的位面。基于A4C视图的关键解剖结构分割为功能评估和疾病诊断提供了依据。然而,目前的胎儿心脏分割方法不能充分利用超声视频中未标记的中间帧。此外,由于胎儿心脏结构复杂多变,极易造成分类混淆,严重影响了分割的精度和可靠性。在本文中,我们提出了一种基于多级对比学习的校正模型(MLCL-CM),用于胎儿超声心动图中五个关键心脏结构的半监督分割。MLCL-CM通过利用大量未标记的中间帧来提高标记关键帧的分割性能。为了缓解错误分类问题,我们在类别级和像素级对比学习中构建了正对和负对,并引入了两种不确定性量化技术来指导全局和局部空间中更鲁棒和细粒度的判别特征表示的学习。此外,我们还集成了一个自适应校正模型,通过动态加权不一致区域来实现更稳定和一致的预测。在100个和300个胎儿的实际A4C视图上的实验结果表明,所提出的MLCL-CM优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信