LoRA2: Multi-scale low-rank approximations for fine-tuning large language models

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jia-Chen Zhang , Yu-Jie Xiong , Chun-Ming Xia , Dong-Hai Zhu , Hong-Jian Zhan
{"title":"LoRA2: Multi-scale low-rank approximations for fine-tuning large language models","authors":"Jia-Chen Zhang ,&nbsp;Yu-Jie Xiong ,&nbsp;Chun-Ming Xia ,&nbsp;Dong-Hai Zhu ,&nbsp;Hong-Jian Zhan","doi":"10.1016/j.neucom.2025.130859","DOIUrl":null,"url":null,"abstract":"<div><div>Fine-tuning large language models (LLMs) with high parameter efficiency for downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning. Although it has demonstrated commendable performance, updating parameters within a single scale may not be the optimal choice for complex downstream tasks. In this paper, we extend the LoRA to multiple scales, dubbed as LoRA<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We first combine orthogonal projection theory to train two low-dimensional LoRAs in two mutually orthogonal planes. By multiplying two LoRAs, a high-dimensional LoRA is obtained, forming a multi-scale LoRA. Then, we improve the importance score algorithm, significantly reducing the computation required for parameter sensitivity scoring. By pruning singular values with lower importance scores, thereby enhancing adaptability to various downstream tasks. Extensive experiments are conducted on two widely used pre-trained models to validate the effectiveness of LoRA<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Results show that it significantly reduces the number of trainable parameters to just 0.72% compared to full fine-tuning on the DeBERTa-V3-base model, while still delivering highly impressive performance. Our code is available here: <span><span>https://github.com/Godz-z/LoRA-2</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130859"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015310","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-tuning large language models (LLMs) with high parameter efficiency for downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning. Although it has demonstrated commendable performance, updating parameters within a single scale may not be the optimal choice for complex downstream tasks. In this paper, we extend the LoRA to multiple scales, dubbed as LoRA2. We first combine orthogonal projection theory to train two low-dimensional LoRAs in two mutually orthogonal planes. By multiplying two LoRAs, a high-dimensional LoRA is obtained, forming a multi-scale LoRA. Then, we improve the importance score algorithm, significantly reducing the computation required for parameter sensitivity scoring. By pruning singular values with lower importance scores, thereby enhancing adaptability to various downstream tasks. Extensive experiments are conducted on two widely used pre-trained models to validate the effectiveness of LoRA2. Results show that it significantly reduces the number of trainable parameters to just 0.72% compared to full fine-tuning on the DeBERTa-V3-base model, while still delivering highly impressive performance. Our code is available here: https://github.com/Godz-z/LoRA-2.
LoRA2:用于微调大型语言模型的多尺度低秩近似
对下游任务进行高参数效率的大型语言模型(llm)微调已成为一种新的范式。低秩自适应(LoRA)显著减少了可训练参数的数量。尽管它已经证明了值得称赞的性能,但在单一规模内更新参数可能不是复杂下游任务的最佳选择。在本文中,我们将LoRA扩展到多个尺度,称为LoRA2。首先结合正交投影理论,在两个相互正交的平面上训练两个低维lora。将两个LoRA相乘,得到一个高维LoRA,形成多尺度LoRA。然后,我们改进了重要性评分算法,大大减少了参数敏感性评分所需的计算量。通过对重要性得分较低的奇异值进行剪枝,从而增强对各种下游任务的适应性。在两种广泛使用的预训练模型上进行了大量实验,以验证LoRA2的有效性。结果表明,与deberta - v3基础模型的完全微调相比,它显着减少了可训练参数的数量,仅为0.72%,同时仍然提供了非常令人印象深刻的性能。我们的代码可以在这里找到:https://github.com/Godz-z/LoRA-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信