Kernel clustering with automatic variable weighting for interval data

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
José Nataniel Andrade de Sá , Marcelo Rodrigo Portela Ferreira , Francisco de Assis Tenorio de Carvalho
{"title":"Kernel clustering with automatic variable weighting for interval data","authors":"José Nataniel Andrade de Sá ,&nbsp;Marcelo Rodrigo Portela Ferreira ,&nbsp;Francisco de Assis Tenorio de Carvalho","doi":"10.1016/j.neucom.2025.130849","DOIUrl":null,"url":null,"abstract":"<div><div>Symbolic Data Analysis (SDA) is a field associated with statistics and artificial intelligence that deals with multi-valued data, such as histograms, intervals, and lists. This type of data emerges as an alternative to conventional aggregation methods (mean, median, and mode) to account for variability. It is particularly useful when analyzing groups of individuals rather than single individuals. For example, when we have information about patients but aim to describe and analyze hospitals. Kernel functions are extensively employed in clustering algorithms because they perform better when there is no linear separability between clusters and/or the clusters are not hyperspherical. This paper proposes new clustering methods based on the Gaussian kernel that weigh the interval-valued variables automatically. These methods are particularly appropriate when there are non-informative variables or variables relevant to specific clusters. We introduce four global variants, in which each variable has the same weight across all clusters, and two local variants, where variable weights differ for each cluster. Although local methods offer greater flexibility in the weighting scheme, global methods are less susceptible to local minima. Experimental evaluation over simulated and real interval-valued datasets, compared to traditional clustering methods for interval data, demonstrated the effectiveness of the introduced algorithms. The source code and datasets are available at <span><span>https://github.com/Natandradesa/Kernel-Clustering-for-Interval-Data</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130849"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015218","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic Data Analysis (SDA) is a field associated with statistics and artificial intelligence that deals with multi-valued data, such as histograms, intervals, and lists. This type of data emerges as an alternative to conventional aggregation methods (mean, median, and mode) to account for variability. It is particularly useful when analyzing groups of individuals rather than single individuals. For example, when we have information about patients but aim to describe and analyze hospitals. Kernel functions are extensively employed in clustering algorithms because they perform better when there is no linear separability between clusters and/or the clusters are not hyperspherical. This paper proposes new clustering methods based on the Gaussian kernel that weigh the interval-valued variables automatically. These methods are particularly appropriate when there are non-informative variables or variables relevant to specific clusters. We introduce four global variants, in which each variable has the same weight across all clusters, and two local variants, where variable weights differ for each cluster. Although local methods offer greater flexibility in the weighting scheme, global methods are less susceptible to local minima. Experimental evaluation over simulated and real interval-valued datasets, compared to traditional clustering methods for interval data, demonstrated the effectiveness of the introduced algorithms. The source code and datasets are available at https://github.com/Natandradesa/Kernel-Clustering-for-Interval-Data.
区间数据的自动变权核聚类
符号数据分析(SDA)是一个与统计学和人工智能相关的领域,用于处理多值数据,如直方图、间隔和列表。这种类型的数据可以替代传统的聚合方法(平均值、中位数和模式)来解释可变性。它在分析个体群体而不是单个个体时特别有用。例如,当我们有关于病人的信息,但目的是描述和分析医院。核函数在聚类算法中被广泛应用,因为当聚类之间没有线性可分性和/或聚类不是超球面时,核函数的性能更好。本文提出了一种基于高斯核的自动加权区间值变量的聚类方法。当存在非信息性变量或与特定集群相关的变量时,这些方法特别适用。我们引入了四个全局变量,其中每个变量在所有聚类中具有相同的权重,以及两个局部变量,其中每个聚类的变量权重不同。虽然局部方法在加权方案中提供了更大的灵活性,但全局方法不太容易受到局部最小值的影响。在模拟和真实区间值数据集上的实验评估,与传统的区间数据聚类方法进行了比较,证明了所引入算法的有效性。源代码和数据集可从https://github.com/Natandradesa/Kernel-Clustering-for-Interval-Data获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信