Jie Gao , Rong Cheng , Yaoxin Wu , Honghao Zhao , Weiming Mai , Oded Cats
{"title":"Optimizing matching radius for ride-hailing systems with dual-replay-buffer deep reinforcement learning","authors":"Jie Gao , Rong Cheng , Yaoxin Wu , Honghao Zhao , Weiming Mai , Oded Cats","doi":"10.1016/j.cie.2025.111296","DOIUrl":null,"url":null,"abstract":"<div><div>The matching radius, defined as the maximum pick-up distance within which waiting riders and idle drivers can be matched, is a critical variable in ride-hailing systems. Optimizing the matching radius can significantly enhance system performance, but determining its optimal value is challenging due to the dynamic nature of ride-hailing environments. The matching radius should adapt to spatial and temporal variations, as well as to real-time fluctuations in supply and demand. To address this challenge, this paper proposes a dual-reply-buffer deep reinforcement learning method for dynamic matching radius optimization. By modeling the matching radius optimization problem as a Markov decision process, the method trains a policy network to adaptively adjust the matching radius in response to changing conditions in the ride-hailing system, thereby improving efficiency and service quality. We validate our method using real-world ride-hailing data from Austin, Texas. Experimental results show that the proposed method outperforms baseline approaches, achieving higher matching rates, shorter average pick-up distances, and better driver utilization across different scenarios.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"208 ","pages":"Article 111296"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225004425","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The matching radius, defined as the maximum pick-up distance within which waiting riders and idle drivers can be matched, is a critical variable in ride-hailing systems. Optimizing the matching radius can significantly enhance system performance, but determining its optimal value is challenging due to the dynamic nature of ride-hailing environments. The matching radius should adapt to spatial and temporal variations, as well as to real-time fluctuations in supply and demand. To address this challenge, this paper proposes a dual-reply-buffer deep reinforcement learning method for dynamic matching radius optimization. By modeling the matching radius optimization problem as a Markov decision process, the method trains a policy network to adaptively adjust the matching radius in response to changing conditions in the ride-hailing system, thereby improving efficiency and service quality. We validate our method using real-world ride-hailing data from Austin, Texas. Experimental results show that the proposed method outperforms baseline approaches, achieving higher matching rates, shorter average pick-up distances, and better driver utilization across different scenarios.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.