On optimal control of hybrid dynamical systems using complementarity constraints

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Saif R. Kazi , Kexin Wang , Lorenz Biegler
{"title":"On optimal control of hybrid dynamical systems using complementarity constraints","authors":"Saif R. Kazi ,&nbsp;Kexin Wang ,&nbsp;Lorenz Biegler","doi":"10.1016/j.jprocont.2025.103492","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal control for switch-based dynamical systems is a challenging problem in the process control literature. In this study, we model these systems as hybrid dynamical systems with finite number of unknown switching points and reformulate them using non-smooth and non-convex complementarity constraints as a mathematical program with complementarity constraints (MPCC). We utilize a moving finite element based strategy to discretize the differential equation system to accurately locate the unknown switching points at the finite element boundary and achieve high-order accuracy at intermediate non-collocation points. We propose a globalization approach to solve the discretized MPCC problem using a mixed NLP/MILP-based strategy to converge to a non-spurious first-order optimal solution. The method is tested on three dynamic optimization examples, including a gas–liquid tank model and an optimal control problem with a sliding mode solution.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"153 ","pages":"Article 103492"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001209","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal control for switch-based dynamical systems is a challenging problem in the process control literature. In this study, we model these systems as hybrid dynamical systems with finite number of unknown switching points and reformulate them using non-smooth and non-convex complementarity constraints as a mathematical program with complementarity constraints (MPCC). We utilize a moving finite element based strategy to discretize the differential equation system to accurately locate the unknown switching points at the finite element boundary and achieve high-order accuracy at intermediate non-collocation points. We propose a globalization approach to solve the discretized MPCC problem using a mixed NLP/MILP-based strategy to converge to a non-spurious first-order optimal solution. The method is tested on three dynamic optimization examples, including a gas–liquid tank model and an optimal control problem with a sliding mode solution.
基于互补约束的混合动力系统最优控制
基于开关的动态系统的最优控制是过程控制文献中一个具有挑战性的问题。在本研究中,我们将这些系统建模为具有有限数量未知开关点的混合动力系统,并使用非光滑和非凸互补约束将其重新表述为具有互补约束(MPCC)的数学规划。我们利用基于移动有限元的策略对微分方程系统进行离散化,以精确定位有限元边界处的未知切换点,并在中间非搭配点处实现高阶精度。我们提出了一种全球化方法来解决离散化MPCC问题,使用基于混合NLP/ milp的策略收敛到非伪一阶最优解。通过气液罐模型和带滑模解的最优控制问题三个动态优化实例对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信