Detecting mental disorder on social media: A ChatGPT-augmented explainable approach

IF 2.9 Q1 Social Sciences
Loris Belcastro, Riccardo Cantini, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio
{"title":"Detecting mental disorder on social media: A ChatGPT-augmented explainable approach","authors":"Loris Belcastro,&nbsp;Riccardo Cantini,&nbsp;Fabrizio Marozzo,&nbsp;Domenico Talia,&nbsp;Paolo Trunfio","doi":"10.1016/j.osnem.2025.100321","DOIUrl":null,"url":null,"abstract":"<div><div>In the digital era, the prevalence of depressive symptoms expressed on social media has raised serious concerns, necessitating advanced methodologies for timely detection. This paper addresses the challenge of interpretable depression detection by proposing a novel methodology that effectively combines Large Language Models (LLMs) with eXplainable Artificial Intelligence (XAI) and conversational agents like ChatGPT. In our methodology, explanations are achieved by integrating BERTweet, a Twitter-specific variant of BERT, into a novel self-explanatory model, namely BERT-XDD, capable of providing both classification and explanations via masked attention. The interpretability is further enhanced using ChatGPT to transform technical explanations into human-readable commentaries. By introducing an effective and modular approach for interpretable depression detection, our methodology can contribute to the development of socially responsible digital platforms, fostering early intervention and support for mental health challenges under the guidance of qualified healthcare professionals.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"48 ","pages":"Article 100321"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696425000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In the digital era, the prevalence of depressive symptoms expressed on social media has raised serious concerns, necessitating advanced methodologies for timely detection. This paper addresses the challenge of interpretable depression detection by proposing a novel methodology that effectively combines Large Language Models (LLMs) with eXplainable Artificial Intelligence (XAI) and conversational agents like ChatGPT. In our methodology, explanations are achieved by integrating BERTweet, a Twitter-specific variant of BERT, into a novel self-explanatory model, namely BERT-XDD, capable of providing both classification and explanations via masked attention. The interpretability is further enhanced using ChatGPT to transform technical explanations into human-readable commentaries. By introducing an effective and modular approach for interpretable depression detection, our methodology can contribute to the development of socially responsible digital platforms, fostering early intervention and support for mental health challenges under the guidance of qualified healthcare professionals.

Abstract Image

在社交媒体上检测精神障碍:一种chatgpt增强的可解释方法
在数字时代,在社交媒体上表达的抑郁症状的流行引起了严重关注,需要先进的方法来及时发现。本文通过提出一种新的方法来解决可解释抑郁症检测的挑战,该方法有效地将大型语言模型(llm)与可解释人工智能(XAI)和会话代理(如ChatGPT)相结合。在我们的方法中,解释是通过将BERTweet (BERT的一个特定于twitter的变体)集成到一个新的自解释模型中来实现的,即BERT- xdd,该模型能够通过隐藏注意提供分类和解释。使用ChatGPT将技术解释转换为人类可读的注释,进一步增强了可解释性。通过引入一种有效的模块化方法来进行可解释的抑郁症检测,我们的方法可以促进对社会负责的数字平台的发展,在合格的医疗保健专业人员的指导下促进对心理健康挑战的早期干预和支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信