Leveraging Digital Twin for operational resilience in the oil and gas industry

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-07-03 DOI:10.1016/j.array.2025.100443
Giovanni Mazzuto, Ilaria Pietrangeli, Marco Ortenzi, Filippo Emanuele Ciarapica, Maurizio Bevilacqua
{"title":"Leveraging Digital Twin for operational resilience in the oil and gas industry","authors":"Giovanni Mazzuto,&nbsp;Ilaria Pietrangeli,&nbsp;Marco Ortenzi,&nbsp;Filippo Emanuele Ciarapica,&nbsp;Maurizio Bevilacqua","doi":"10.1016/j.array.2025.100443","DOIUrl":null,"url":null,"abstract":"<div><h3>Motivation</h3><div>The oil and gas industry is a highly complex and interconnected environments, where system failures or cyber threats can lead to severe operational and safety risks. Digital Twin enables real-time monitoring and predictive analysis to enhance resilience and decision-making, and existing studies often lack a comprehensive integration of system components and interdependencies, limiting the effectiveness of DT applications in critical scenarios.</div></div><div><h3>Methodology</h3><div>This paper presents the development of a DT for an experimental oil and gas transportation system at Università Politecnica delle Marche. The DT integrates the same digital PID controllers used in the real plant to replicate system dynamics and predict anomalous behaviours. Developed within the EU- and MUR-funded RESIST project, the DT is part of a broader digital environment that includes both the plant and operator models, aimed at enhancing system resilience.</div><div>A Gradient Boosted Tree algorithm, selected through comparative analysis, proved the most reliable technique for predictive modelling. The model was validated using real data, focusing on two key components: the ejector-pump system and the vertical tank.</div></div><div><h3>Results</h3><div>The findings demonstrate the potential of DTs as decision-support tools for plant operators, enabling proactive risk management and enhanced operational resilience despite, the presence of air phase variability introduces fluctuations in some critical conditions, requiring further data acquisition and refinement.</div></div><div><h3>Future work</h3><div>Future improvements will focus on refining the air flow modelling and expanding the dataset to improve predictive performance in extreme conditions providing an efficient anomaly detection system based on the DT prediction.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100443"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation

The oil and gas industry is a highly complex and interconnected environments, where system failures or cyber threats can lead to severe operational and safety risks. Digital Twin enables real-time monitoring and predictive analysis to enhance resilience and decision-making, and existing studies often lack a comprehensive integration of system components and interdependencies, limiting the effectiveness of DT applications in critical scenarios.

Methodology

This paper presents the development of a DT for an experimental oil and gas transportation system at Università Politecnica delle Marche. The DT integrates the same digital PID controllers used in the real plant to replicate system dynamics and predict anomalous behaviours. Developed within the EU- and MUR-funded RESIST project, the DT is part of a broader digital environment that includes both the plant and operator models, aimed at enhancing system resilience.
A Gradient Boosted Tree algorithm, selected through comparative analysis, proved the most reliable technique for predictive modelling. The model was validated using real data, focusing on two key components: the ejector-pump system and the vertical tank.

Results

The findings demonstrate the potential of DTs as decision-support tools for plant operators, enabling proactive risk management and enhanced operational resilience despite, the presence of air phase variability introduces fluctuations in some critical conditions, requiring further data acquisition and refinement.

Future work

Future improvements will focus on refining the air flow modelling and expanding the dataset to improve predictive performance in extreme conditions providing an efficient anomaly detection system based on the DT prediction.
利用Digital Twin技术提高油气行业的运营弹性
油气行业是一个高度复杂和相互关联的环境,系统故障或网络威胁可能会导致严重的操作和安全风险。数字孪生能够实现实时监测和预测分析,以增强弹性和决策能力,而现有的研究往往缺乏对系统组件和相互依赖性的全面集成,限制了数字孪生在关键场景下应用的有效性。本文介绍了马尔切理工大学实验石油和天然气运输系统的DT开发。DT集成了与实际工厂中使用的相同的数字PID控制器,以复制系统动态并预测异常行为。在欧盟和英国能源部资助的RESIST项目中开发,DT是更广泛的数字环境的一部分,包括工厂和运营商模型,旨在增强系统的弹性。通过对比分析,选择了一种梯度提升树算法作为预测建模的最可靠方法。该模型使用实际数据进行了验证,重点关注两个关键部件:喷射器泵系统和垂直罐。研究结果表明,尽管在某些关键条件下,空气相变化会带来波动,但DTs作为工厂操作人员决策支持工具的潜力仍然存在,可以实现主动风险管理,增强运营弹性,这需要进一步的数据采集和改进。未来的改进将集中在改进气流建模和扩展数据集,以提高在极端条件下的预测性能,提供基于DT预测的高效异常检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信