Phase equilibria and thermodynamic assessment of the Co–Cr binary system

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Kazushige Ioroi, Haruhi Kumeta, Xiao Xu, Ryosuke Kainuma, Toshihiro Omori
{"title":"Phase equilibria and thermodynamic assessment of the Co–Cr binary system","authors":"Kazushige Ioroi,&nbsp;Haruhi Kumeta,&nbsp;Xiao Xu,&nbsp;Ryosuke Kainuma,&nbsp;Toshihiro Omori","doi":"10.1016/j.calphad.2025.102853","DOIUrl":null,"url":null,"abstract":"<div><div>The phase equilibria of the Co–Cr binary system were experimentally investigated across the whole composition range. Liquidus and solidus temperatures, measured up to 1800 °C using a differential thermal analyzer and differential scanning calorimeter, were slightly higher than those reported in the literature. The equilibrium compositions of two-phase alloys were analyzed using an electron probe microanalyzer, yielding reliable data regarding the γ(Co) + α(Cr) phase boundaries at high temperatures and ε(Co) + σ phase boundaries at low temperatures. Subsequently, a thermodynamic assessment of the Co–Cr binary system was performed using the CALPHAD technique, relying on our experimental data as well as thermodynamic property data from the literatures. The calculated Co–Cr phase diagram accurately reproduced the experimentally determined phase boundaries and thermodynamic properties, including activity, excess enthalpy, and excess Gibbs energy.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"90 ","pages":"Article 102853"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591625000562","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The phase equilibria of the Co–Cr binary system were experimentally investigated across the whole composition range. Liquidus and solidus temperatures, measured up to 1800 °C using a differential thermal analyzer and differential scanning calorimeter, were slightly higher than those reported in the literature. The equilibrium compositions of two-phase alloys were analyzed using an electron probe microanalyzer, yielding reliable data regarding the γ(Co) + α(Cr) phase boundaries at high temperatures and ε(Co) + σ phase boundaries at low temperatures. Subsequently, a thermodynamic assessment of the Co–Cr binary system was performed using the CALPHAD technique, relying on our experimental data as well as thermodynamic property data from the literatures. The calculated Co–Cr phase diagram accurately reproduced the experimentally determined phase boundaries and thermodynamic properties, including activity, excess enthalpy, and excess Gibbs energy.
Co-Cr二元体系的相平衡及热力学评价
在整个组成范围内对Co-Cr二元体系的相平衡进行了实验研究。用差示热分析仪和差示扫描量热计测量的液相和固相温度高达1800°C,略高于文献报道的温度。利用电子探针微量分析仪分析了两相合金的平衡成分,得到了高温下γ(Co) + α(Cr)相界和低温下ε(Co) + σ相界的可靠数据。随后,基于我们的实验数据和文献中的热力学性质数据,使用CALPHAD技术对Co-Cr二元体系进行了热力学评估。计算出的Co-Cr相图精确地再现了实验确定的相边界和热力学性质,包括活度、多余焓和多余吉布斯能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信