Flexible Manufacturing Systems intralogistics: Dynamic optimization of AGVs and tool sharing using Colored-Timed Petri Nets and actor–critic RL with actions masking
Sofiene Lassoued , Laxmikant Shrikant Baheti , Nathalie Weiß-Borkowski , Stefan Lier , Andreas Schwung
{"title":"Flexible Manufacturing Systems intralogistics: Dynamic optimization of AGVs and tool sharing using Colored-Timed Petri Nets and actor–critic RL with actions masking","authors":"Sofiene Lassoued , Laxmikant Shrikant Baheti , Nathalie Weiß-Borkowski , Stefan Lier , Andreas Schwung","doi":"10.1016/j.jmsy.2025.06.017","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible Manufacturing Systems (FMS) are pivotal in optimizing production processes in today’s rapidly evolving manufacturing landscape. This paper advances the traditional job shop scheduling problem by incorporating additional complexities through the simultaneous integration of automated guided vehicles (AGVs) and tool-sharing systems. We propose a novel approach that combines Colored-Timed Petri Nets (CTPNs) with actor–critic model-based reinforcement learning (MBRL), effectively addressing the multifaceted challenges associated with FMS. CTPNs provide a formal modeling structure and dynamic action masking, significantly reducing the action search space, while MBRL ensures adaptability to changing environments through the learned policy. Leveraging the advantages of MBRL, we incorporate a lookahead strategy for optimal positioning of AGVs, improving operational efficiency. Our approach was evaluated on small-sized public benchmarks and a newly developed large-scale benchmark inspired by the Taillard benchmark. The results show that our approach matches traditional methods on smaller instances and outperforms them on larger ones in terms of makespan while achieving a tenfold reduction in computation time. To ensure reproducibility, we propose a gym-compatible environment and an instance generator. Additionally, an ablation study evaluates the contribution of each framework component to its overall performance.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"82 ","pages":"Pages 405-419"},"PeriodicalIF":12.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525001694","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible Manufacturing Systems (FMS) are pivotal in optimizing production processes in today’s rapidly evolving manufacturing landscape. This paper advances the traditional job shop scheduling problem by incorporating additional complexities through the simultaneous integration of automated guided vehicles (AGVs) and tool-sharing systems. We propose a novel approach that combines Colored-Timed Petri Nets (CTPNs) with actor–critic model-based reinforcement learning (MBRL), effectively addressing the multifaceted challenges associated with FMS. CTPNs provide a formal modeling structure and dynamic action masking, significantly reducing the action search space, while MBRL ensures adaptability to changing environments through the learned policy. Leveraging the advantages of MBRL, we incorporate a lookahead strategy for optimal positioning of AGVs, improving operational efficiency. Our approach was evaluated on small-sized public benchmarks and a newly developed large-scale benchmark inspired by the Taillard benchmark. The results show that our approach matches traditional methods on smaller instances and outperforms them on larger ones in terms of makespan while achieving a tenfold reduction in computation time. To ensure reproducibility, we propose a gym-compatible environment and an instance generator. Additionally, an ablation study evaluates the contribution of each framework component to its overall performance.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.