Tanuj Puri , Tiziana Rancati , Petra Seibold , Adam Webb , Eliana Vasquez Osorio , Andrew Green , Eliana Gioscio , David Azria , Marie-Pierre Farcy-Jacquet , Jenny Chang-Claude , Alison Dunning , Maarten Lambrecht , Barbara Avuzzi , Dirk de Ruysscher , Elena Sperk , Ana Vega , Liv Veldeman , Barry Rosenstein , Jane Shortall , Sarah Kerns , Marcel van Herk
{"title":"Dose-response mapping of bladder and rectum in prostate cancer patients undergoing radiotherapy with and without baseline toxicity correction","authors":"Tanuj Puri , Tiziana Rancati , Petra Seibold , Adam Webb , Eliana Vasquez Osorio , Andrew Green , Eliana Gioscio , David Azria , Marie-Pierre Farcy-Jacquet , Jenny Chang-Claude , Alison Dunning , Maarten Lambrecht , Barbara Avuzzi , Dirk de Ruysscher , Elena Sperk , Ana Vega , Liv Veldeman , Barry Rosenstein , Jane Shortall , Sarah Kerns , Marcel van Herk","doi":"10.1016/j.phro.2025.100805","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Radiotherapy dose–response maps (DRM) combine dose-surface maps (DSM) and toxicity outcomes to identify high-risk subregions in organ-at-risk. This study assesses the impact of baseline toxicity correction on the identification of high-risk subregions in dose–response modeling for prostate cancer patients undergoing radiotherapy.</div></div><div><h3>Materials and methods</h3><div>The analysis included 1808 datasets, with 589 exclusions before toxicity-specific data removal. Bladder/rectum were automatically segmented on planning computed tomography scans, DSMs unwrapped into 91x90 voxel grids, and converted to equivalent doses in 2 Gy fractions (EQD2; α/β = 1 Gy). Seventeen late toxicities were assessed with two methods: (i) baseline toxicity subtracted from the maximum of 12- and 24-months toxicity scores, dichotomized at grade 1, and (ii) maximum of 12- and 24-months toxicity scores dichotomized at grade 1. DSMs were split accordingly, and voxel-wise t-values computed using Welch’s t-equation. Statistically significant voxels were identified via the 95th percentile of maximum of t-value (Tmax) distribution.</div></div><div><h3>Results</h3><div>Event counts with baseline correction were 82/82/286/226 for urinary tract obstruction/retention/urgency/incontinence, respectively; without baseline correction, they were 93/104/465/361. For bladder DSMs, urinary incontinence, obstruction, retention, and urgency had 1143/186, 1768/1848, 516/0, and 33/0 significant voxels without/with baseline correction. For rectum DSMs, urinary incontinence and tract obstruction had 604/0 and 1980/889 significant voxels without/with baseline correction. However, no significant associations between rectal DSMs and rectum-related toxicities were found.</div></div><div><h3>Conclusions</h3><div>DRM without baseline correction appears more sensitive to high-risk subregions due to higher event counts. Non-linear toxicity grading and multivariable analysis may enhance DRM reliability.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"35 ","pages":"Article 100805"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625001101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Radiotherapy dose–response maps (DRM) combine dose-surface maps (DSM) and toxicity outcomes to identify high-risk subregions in organ-at-risk. This study assesses the impact of baseline toxicity correction on the identification of high-risk subregions in dose–response modeling for prostate cancer patients undergoing radiotherapy.
Materials and methods
The analysis included 1808 datasets, with 589 exclusions before toxicity-specific data removal. Bladder/rectum were automatically segmented on planning computed tomography scans, DSMs unwrapped into 91x90 voxel grids, and converted to equivalent doses in 2 Gy fractions (EQD2; α/β = 1 Gy). Seventeen late toxicities were assessed with two methods: (i) baseline toxicity subtracted from the maximum of 12- and 24-months toxicity scores, dichotomized at grade 1, and (ii) maximum of 12- and 24-months toxicity scores dichotomized at grade 1. DSMs were split accordingly, and voxel-wise t-values computed using Welch’s t-equation. Statistically significant voxels were identified via the 95th percentile of maximum of t-value (Tmax) distribution.
Results
Event counts with baseline correction were 82/82/286/226 for urinary tract obstruction/retention/urgency/incontinence, respectively; without baseline correction, they were 93/104/465/361. For bladder DSMs, urinary incontinence, obstruction, retention, and urgency had 1143/186, 1768/1848, 516/0, and 33/0 significant voxels without/with baseline correction. For rectum DSMs, urinary incontinence and tract obstruction had 604/0 and 1980/889 significant voxels without/with baseline correction. However, no significant associations between rectal DSMs and rectum-related toxicities were found.
Conclusions
DRM without baseline correction appears more sensitive to high-risk subregions due to higher event counts. Non-linear toxicity grading and multivariable analysis may enhance DRM reliability.